cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213576 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = F(n-1+h), where F=A000045 (Fibonacci numbers), n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 3, 1, 7, 4, 2, 14, 10, 7, 3, 26, 21, 17, 11, 5, 46, 40, 35, 27, 18, 8, 79, 72, 66, 56, 44, 29, 13, 133, 125, 118, 106, 91, 71, 47, 21, 221, 212, 204, 190, 172, 147, 115, 76, 34, 364, 354, 345, 329, 308, 278, 238, 186, 123, 55, 596, 585, 575, 557, 533, 498, 450, 385, 301, 199, 89
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Comments

Principal diagonal: A213577.
Antidiagonal sums: A213578.
Row 1, (1,2,3,...)**(1,1,2,3,5,...): A001924;
Row 2, (1,2,3,...)**(1,2,3,5,8,...): A001891;
Row 3, (1,2,3,...)**(2,3,5,8,13,...): A033937;
Row 4, (1,2,3,...)**(3,5,8,13,21,...): A033960;
Row 5, (1,2,3,...)**(5,8,13,21,...): A037140;
Row 6, (1,2,3,...)**(8,13,21,34,...): A037157.
For a guide to related arrays, see A213500.
The falling antidiagonal rows can be computed by the sum Sum_{j=0..n-k} (n-k-j+1)*Fibonacci(k+j) which can also be seen as Fibonacci(n+4) - Lucas(k+2) - (n-k)*Fibonacci(k+1). - G. C. Greubel, Jul 05 2019

Examples

			Northwest corner (the array is read by falling antidiagonals):
  1,   3,   7,  14,  26,  46,  79
  1,   4,  10,  21,  40,  72, 125
  2,   7,  17,  35,  66, 118, 204
  3,  11,  27,  56, 106, 190, 329
  5,  18,  44,  91, 172, 308, 533
  8,  29,  71, 147, 278, 498, 862
		

Crossrefs

Cf. A213500.

Programs

  • GAP
    Flat(List([1..10], n-> List([1..n], k-> Fibonacci(n+4) - (n-k+1) *Fibonacci(k+1) - Fibonacci(k+3)))); # G. C. Greubel, Jul 05 2019
  • Magma
    [[Fibonacci(n+4) -(n-k)*Fibonacci(k+1) -Lucas(k+2): k in [1..n]]: n in [1..10]]; // G. C. Greubel, Jul 05 2019
    
  • Mathematica
    (* First Program *)
    b[n_]:= n; c[n_]:= Fibonacci[n];
    t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213576 *)
    r[n_]:= Table[t[n, k], {k,1,40}]  (* columns of antidiagonal triangle *)
    d = Table[t[n, n], {n, 1, 40}] (* A213577 *)
    s[n_]:= Sum[t[i, n + 1 - i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213578 *)
    (* Second Program *)
    T[n_, k_]:= Fibonacci[n+4] - (n-k)*Fibonacci[k+1] - LucasL[k+2];
    Table[T[n,k], {n,10}, {k,n}]//Flatten (* G. C. Greubel, Jul 05 2019 *)
  • PARI
    T(n, k)= fibonacci(n+4) - (n-k+1)*fibonacci(k+1) - fibonacci(k+3);
    for(n=1,10, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 05 2019
    
  • Sage
    [[fibonacci(n+4) - (n-k+1)*fibonacci(k+1) - fibonacci(k+3) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Jul 05 2019
    

Formula

Rows: T(n,k) = 3*T(n,k-1) - 2*T(n,k-2) - T(n,k-3) + T(n,k-4).
Columns: T(n,k) = T(n-1,k) + T(n-2,k).
G.f. for row n: f(x)/g(x), where f(x) = F(n) - F(n-1)*x and g(x) = (1 - x - x^2)*(1 - x)^2.
T(n,k) = F(n+k+3) - k*F(n+1) - F(n+3). - Ehren Metcalfe, Jul 04 2019