A213577
Principal diagonal of the convolution array A213576.
Original entry on oeis.org
1, 4, 17, 56, 172, 498, 1395, 3820, 10307, 27534, 73064, 193012, 508341, 1336132, 3507189, 9197732, 24107124, 63159782, 165433895, 433246860, 1134484871, 2970509594, 7777554192, 20363014056, 53312938537, 139578241348
Offset: 1
-
List([1..40], n-> Fibonacci(2*n+3) - Fibonacci(n+3) - n*Fibonacci(n+1)); # G. C. Greubel, Jul 05 2019
-
[Fibonacci(2*n+3) -Fibonacci(n+3) -n*Fibonacci(n+1): n in [1..40]]; // G. C. Greubel, Jul 05 2019
-
(See A213576.)
LinearRecurrence[{5,-6,-3,6,1,-1},{1,4,17,56,172,498},30] (* Harvey P. Dale, Aug 23 2012 *)
Table[Fibonacci[2n+3] -Fibonacci[n+3] -n*Fibonacci[n+1], {n,1,40}] (* G. C. Greubel, Jul 05 2019 *)
-
vector(40, n, fibonacci(2*n+3) - fibonacci(n+3) - n*fibonacci(n+1)) \\ G. C. Greubel, Jul 05 2019
-
[fibonacci(2*n+3) - fibonacci(n+3) - n*fibonacci(n+1) for n in (1..40)] # G. C. Greubel, Jul 05 2019
A213578
Antidiagonal sums of the convolution array A213576.
Original entry on oeis.org
1, 4, 13, 34, 80, 174, 359, 712, 1371, 2580, 4768, 8684, 15629, 27852, 49225, 86390, 150704, 261530, 451795, 777360, 1332791, 2277864, 3882048, 6599064, 11191705, 18940564, 31992709, 53943562, 90807056, 152631750, 256190783
Offset: 1
-
List([1..40], n-> n*Fibonacci(n+4)-2*(Fibonacci(n+5)-n-5)); # G. C. Greubel, Jul 05 2019
-
[n*Fibonacci(n+4)-2*(Fibonacci(n+5)-n-5): n in [1..40]]; // Vincenzo Librandi, Jul 05 2019
-
b[n_]:= n; c[n_]:= Fibonacci[n];
t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213576 *)
r[n_] := Table[t[n, k], {k,40}] (* columns of antidiagonal triangle *)
d = Table[t[n, n], {n,1,40}] (* A213577 *)
s[n_] := Sum[t[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213578 *)
(* alternate program *)
LinearRecurrence[{4,-4,-2,4,0,-1},{1,4,13,34,80,174},40] (* Harvey P. Dale, Jul 04 2019 *)
-
vector(40, n, n*fibonacci(n+4)-2*(fibonacci(n+5)-n-5)) \\ G. C. Greubel, Jul 05 2019
-
[n*Fibonacci(n+4)-2*(Fibonacci(n+5)-n-5) for n in (1..40)] # G. C. Greubel, Jul 05 2019
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
Showing 1-3 of 3 results.
Comments