cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213577 Principal diagonal of the convolution array A213576.

Original entry on oeis.org

1, 4, 17, 56, 172, 498, 1395, 3820, 10307, 27534, 73064, 193012, 508341, 1336132, 3507189, 9197732, 24107124, 63159782, 165433895, 433246860, 1134484871, 2970509594, 7777554192, 20363014056, 53312938537, 139578241348
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Crossrefs

Programs

  • GAP
    List([1..40], n-> Fibonacci(2*n+3) - Fibonacci(n+3) - n*Fibonacci(n+1)); # G. C. Greubel, Jul 05 2019
  • Magma
    [Fibonacci(2*n+3) -Fibonacci(n+3) -n*Fibonacci(n+1): n in [1..40]]; // G. C. Greubel, Jul 05 2019
    
  • Mathematica
    (See A213576.)
    LinearRecurrence[{5,-6,-3,6,1,-1},{1,4,17,56,172,498},30] (* Harvey P. Dale, Aug 23 2012 *)
    Table[Fibonacci[2n+3] -Fibonacci[n+3] -n*Fibonacci[n+1], {n,1,40}] (* G. C. Greubel, Jul 05 2019 *)
  • PARI
    vector(40, n, fibonacci(2*n+3) - fibonacci(n+3) - n*fibonacci(n+1)) \\ G. C. Greubel, Jul 05 2019
    
  • Sage
    [fibonacci(2*n+3) - fibonacci(n+3) - n*fibonacci(n+1) for n in (1..40)] # G. C. Greubel, Jul 05 2019
    

Formula

a(n) = 5*a(n-1) - 6*a(n-2) - 3*a(n-3) + 6*a(n-4) + a(n-5) - a(n-6).
G.f.: x*(1 - x + 3*x^2 - 2*x^3)/((1 - 3*x + x^2)*(1 - x - x^2)^2).
a(n) = Fibonacci(2*n+3) - Fibonacci(n+3) - n*Fibonacci(n+1). - G. C. Greubel, Jul 05 2019