A213577 Principal diagonal of the convolution array A213576.
1, 4, 17, 56, 172, 498, 1395, 3820, 10307, 27534, 73064, 193012, 508341, 1336132, 3507189, 9197732, 24107124, 63159782, 165433895, 433246860, 1134484871, 2970509594, 7777554192, 20363014056, 53312938537, 139578241348
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-6,-3,6,1,-1).
Programs
-
GAP
List([1..40], n-> Fibonacci(2*n+3) - Fibonacci(n+3) - n*Fibonacci(n+1)); # G. C. Greubel, Jul 05 2019
-
Magma
[Fibonacci(2*n+3) -Fibonacci(n+3) -n*Fibonacci(n+1): n in [1..40]]; // G. C. Greubel, Jul 05 2019
-
Mathematica
(See A213576.) LinearRecurrence[{5,-6,-3,6,1,-1},{1,4,17,56,172,498},30] (* Harvey P. Dale, Aug 23 2012 *) Table[Fibonacci[2n+3] -Fibonacci[n+3] -n*Fibonacci[n+1], {n,1,40}] (* G. C. Greubel, Jul 05 2019 *)
-
PARI
vector(40, n, fibonacci(2*n+3) - fibonacci(n+3) - n*fibonacci(n+1)) \\ G. C. Greubel, Jul 05 2019
-
Sage
[fibonacci(2*n+3) - fibonacci(n+3) - n*fibonacci(n+1) for n in (1..40)] # G. C. Greubel, Jul 05 2019
Formula
a(n) = 5*a(n-1) - 6*a(n-2) - 3*a(n-3) + 6*a(n-4) + a(n-5) - a(n-6).
G.f.: x*(1 - x + 3*x^2 - 2*x^3)/((1 - 3*x + x^2)*(1 - x - x^2)^2).
a(n) = Fibonacci(2*n+3) - Fibonacci(n+3) - n*Fibonacci(n+1). - G. C. Greubel, Jul 05 2019