cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213579 Rectangular array: (row n) = b**c, where b(h) = F(h), c(h) = n-1+h, where F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 3, 2, 7, 5, 3, 14, 11, 7, 4, 26, 21, 15, 9, 5, 46, 38, 28, 19, 11, 6, 79, 66, 50, 35, 23, 13, 7, 133, 112, 86, 62, 42, 27, 15, 8, 221, 187, 145, 106, 74, 49, 31, 17, 9, 364, 309, 241, 178, 126, 86, 56, 35, 19, 10, 596, 507, 397, 295, 211, 146, 98, 63, 39, 21
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Comments

Principal diagonal: A213580.
Antidiagonal sums: A053808.
Row 1, (1,1,2,3,5,...)**(1,2,3,4,...): A001924.
Row 2, (1,1,2,3,5,...)**(2,3,4,5,...): A023548.
Row 3, (1,1,2,3,5,...)**(3,4,5,6,...): A023552.
Row 4, (1,1,2,3,5,...)**(4,5,6,7,...): A210730.
Row 5, (1,1,2,3,5,...)**(5,6,7,8,...): A210731.
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....3....7....14...26...46
2....5....11...21...38...66
3....7....15...28...50...86
4....9....19...35...62...106
5....11...23...42...74...126
6....13...27...49...86...146
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Fibonacci(k+3) + n*Fibonacci(k+2) -(n+k+2) ))); # G. C. Greubel, Jul 08 2019
  • Magma
    [[Fibonacci(k+3) + n*Fibonacci(k+2) -(n+k+2): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n]; c[n_]:= n;
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213579 *)
    r[n_]:= Table[T[n, k], {k, 40}]
    d = Table[T[n, n], {n, 1, 40}] (* A213580 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A053808 *)
    (* Second program *)
    Table[Fibonacci[n-k+4] +k*Fibonacci[n-k+3] -(n+3), {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    t(n,k) = fibonacci(n-k+4) + k*fibonacci(n-k+3) - (n+3);
    for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    [[fibonacci(k+3) + n*fibonacci(k+2) -(n+k+2) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019
    

Formula

T(n,k) = 3*T(n,k-1) - 2*T(n,k-2) - T(n,k-3) + T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = n - (n-1)*x and g(x) = (1-x-x^2) *(1-x)^2.
T(n, k) = Fibonacci(k+3) + n*Fibonacci(k+2) - (n+k+2). - G. C. Greubel, Jul 08 2019