cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A213580 Principal diagonal of the convolution array A213579.

Original entry on oeis.org

1, 5, 15, 35, 74, 146, 277, 511, 925, 1651, 2916, 5108, 8889, 15385, 26507, 45491, 77806, 132678, 225645, 382835, 648121, 1095075, 1846920, 3109800, 5228209, 8777261, 14716167, 24643331, 41220050, 68873786, 114964741, 191719783
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..40], n-> F(n+3) +n*F(n+2) -2*(n+1)); # G. C. Greubel, Jul 08 2019
  • Magma
    F:=Fibonacci; [F(n+3) + n*F(n+2) -2*(n+1): n in [1..40]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n]; c[n_]:= n;
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213579 *)
    r[n_]:= Table[T[n, k], {k, 40}]
    d = Table[T[n, n], {n, 1, 40}] (* A213580 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A053808 *)
    (* Second program *)
    Table[Fibonacci[n+3] + n*Fibonacci[n+2] -2*(n+1), {n, 40}] (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    vector(40, n, f=fibonacci; f(n+3) +n*f(n+2) -2*(n+1)) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    f=fibonacci; [f(n+3) +n*f(n+2) -2*(n+1) for n in (1..40)] # G. C. Greubel, Jul 08 2019
    

Formula

a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) + a(n-5).
G.f.: x*(1 + x - x^2 - 3*x^3)/(1 - 2*x + x^3)^2.
a(n) = Fibonacci(n+3) + n*Fibonacci(n+2) - 2*(n+1). - G. C. Greubel, Jul 08 2019

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A053808 Partial sums of A001891.

Original entry on oeis.org

1, 5, 15, 36, 76, 148, 273, 485, 839, 1424, 2384, 3952, 6505, 10653, 17383, 28292, 45964, 74580, 120905, 195885, 317231, 513600, 831360, 1345536, 2177521, 3523733, 5701983, 9226500, 14929324, 24156724, 39087009, 63244757, 102332855, 165578768, 267912848
Offset: 0

Views

Author

Barry E. Williams, Mar 27 2000

Keywords

Comments

Antidiagonal sums of the convolution array A213579 and row 1 of the convolution array A213590. - Clark Kimberling, Jun 18 2012
Also number CG(n,2) of complete games with n players of 2 types. - N. J. A. Sloane, Dec 29 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Convolution of A000290 (squares) with A000045, n >= 1. (Fibonacci) - Wolfdieter Lang, Apr 10 2000
Right-hand column 7 of triangle A011794.

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+8) - (n^2 +8*n+20)); # G. C. Greubel, Jul 06 2019
  • Magma
    [Fibonacci(n+8) - (n^2+8*n+20): n in [0..40]]; // G. C. Greubel, Jul 06 2019
    
  • Mathematica
    Table[Fibonacci[n+8] -(n^2 +8*n+20), {n,0,40}] (* G. C. Greubel, Jul 06 2019 *)
    LinearRecurrence[{4,-5,1,2,-1},{1,5,15,36,76},40] (* Harvey P. Dale, Apr 14 2022 *)
  • PARI
    vector(40, n, n--; fibonacci(n+8) - (n^2 +8*n+20)) \\ G. C. Greubel, Jul 06 2019
    
  • Sage
    [fibonacci(n+8) - (n^2 +8*n+20) for n in (0..20)] # G. C. Greubel, Jul 06 2019
    

Formula

a(n) = a(n-1) + a(n-2) + (n+1)^2, a(-n)=0.
G.f.: (1+x)/((1-x-x^2)*(1-x)^3).
a(n) = Fibonacci(n+6) - (n^2 + 4*n + 8), n >= 2 (see p. 184 of FQ reference).
a(n-2) = Sum_{i=0..n} Fibonacci(i)*(n-i)^2. - Benoit Cloitre, Mar 06 2004

A213584 Rectangular array: (row n) = b**c, where b(h) = F(h+1), c(h) = n-1+h, where F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 21, 16, 10, 4, 40, 32, 22, 13, 5, 72, 59, 43, 28, 16, 6, 125, 104, 78, 54, 34, 19, 7, 212, 178, 136, 97, 65, 40, 22, 8, 354, 299, 231, 168, 116, 76, 46, 25, 9, 585, 496, 386, 284, 200, 135, 87, 52, 28, 10, 960, 816, 638, 473, 337, 232, 154, 98, 58, 31, 11
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Comments

Principal diagonal: A213585.
Antidiagonal sums: A213586.
Row 1, (1,2,3,5,...)**(1,2,3,4,...): A001891.
Row 2, (1,2,3,5,...)**(2,3,4,5,...): A023550.
Row 3, (1,2,3,5,...)**(3,4,5,6,...): A023554.
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...4....10...21...40....72
2...7....16...32...59....104
3...10...22...43...78....136
4...13...28...54...97....168
5...16...34...65...116...200
6...19...40...76...135...232
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Fibonacci(n-k+5) + k*Fibonacci(n-k+4) -(2*n+5)))) # G. C. Greubel, Jul 08 2019
  • Magma
    [[Fibonacci(n-k+5) + k*Fibonacci(n-k+4) -(2*n+5): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n+1]; c[n_]:= n;
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213584 *)
    r[n_]:= Table[T[n, k], {k, 40}]  (* columns of antidiagonal triangle *)
    d = Table[T[n, n], {n, 1, 40}] (* A213585 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213586 *)
    (* Second program *)
    Table[Fibonacci[n-k+5] + k*Fibonacci[n-k+4] -2*n-5, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    t(n,k) = fibonacci(n-k+5) + k*fibonacci(n-k+4) -(2*n+5);
    for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    [[fibonacci(n-k+5) + k*fibonacci(n-k+4) -(2*n+5) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019
    

Formula

T(n,k) = 3*T(n,k-1) - 2*T(n,k-2) - T(n,k-3) + T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = n + x - (n - 1)*x and g(x) = (1 - x - x^2)*(1 - x)^2.
T(n, k) = Fibonacci(k+4) + n*Fibonacci(k+3) - 2*(n+k) - 3. - G. C. Greubel, Jul 08 2019

A023552 Convolution of natural numbers >= 3 and Fibonacci numbers.

Original entry on oeis.org

3, 7, 15, 28, 50, 86, 145, 241, 397, 650, 1060, 1724, 2799, 4539, 7355, 11912, 19286, 31218, 50525, 81765, 132313, 214102, 346440, 560568, 907035, 1467631, 2374695, 3842356, 6217082, 10059470, 16276585, 26336089, 42612709, 68948834, 111561580, 180510452
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci; List([1..40], n-> F(n+4)+2*F(n+2)-n-5); # G. C. Greubel, Jul 08 2019
  • Magma
    F:=Fibonacci; [F(n+4)+2*F(n+2)-n-5: n in [1..40]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    LinearRecurrence[{3,-2,-1,1},{3,7,15,28},40] (* or *) Rest[ CoefficientList[Series[(x(3-2x))/((1-x-x^2)(1-x)^2),{x,0,40}],x]]  (* Harvey P. Dale, Apr 24 2011 *)
    With[{F=Fibonacci}, Table[F[n+4]+2*F[n+2]-n-5, {n,40}]] (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    Vec(x*(3-2*x)/((1-x-x^2)*(1-x)^2) + O(x^40)) \\ Colin Barker, Mar 11 2017
    
  • PARI
    vector(40, n, f=fibonacci; f(n+4)+2*f(n+2)-n-5) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    f=fibonacci; [f(n+4)+2*f(n+2)-n-5 for n in (1..40)] # G. C. Greubel, Jul 08 2019
    

Formula

G.f.: x*(3-2*x)/((1-x-x^2)*(1-x)^2). - Ralf Stephan, Apr 28 2004
From Colin Barker, Mar 11 2017: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>4.
a(n) = -5 + (2^(-1-n)*((1-sqrt(5))^n*(-13+5*sqrt(5)) + (1+sqrt(5))^n*(13+5*sqrt(5)))) / sqrt(5) - n. (End)
a(n) = Fibonacci(n+4) + 2*Fibonacci(n+2) - (n+5). - G. C. Greubel, Jul 08 2019

A210730 a(n) = a(n-1) + a(n-2) + n + 2 with n>1, a(0)=a(1)=0.

Original entry on oeis.org

0, 0, 4, 9, 19, 35, 62, 106, 178, 295, 485, 793, 1292, 2100, 3408, 5525, 8951, 14495, 23466, 37982, 61470, 99475, 160969, 260469, 421464, 681960, 1103452, 1785441, 2888923, 4674395, 7563350, 12237778, 19801162, 32038975, 51840173, 83879185, 135719396
Offset: 0

Views

Author

Alex Ratushnyak, May 10 2012

Keywords

Comments

Deleting the 0's leaves row 4 of the convolution array A213579. - Clark Kimberling, Jun 20 2012

Crossrefs

Cf. A033818: a(n)=a(n-1)+a(n-2)+n-5, a(0)=a(1)=0 (except first 2 terms and sign).
Cf. A002062: a(n)=a(n-1)+a(n-2)+n-4, a(0)=a(1)=0 (except the first term and sign).
Cf. A065220: a(n)=a(n-1)+a(n-2)+n-3, a(0)=a(1)=0.
Cf. A001924: a(n)=a(n-1)+a(n-2)+n-1, a(0)=a(1)=0 (except the first term).
Cf. A023548: a(n)=a(n-1)+a(n-2)+n, a(0)=a(1)=0 (except first 2 terms).
Cf. A023552: a(n)=a(n-1)+a(n-2)+n+1, a(0)=a(1)=0 (except first 2 terms).
Cf. A210731: a(n)=a(n-1)+a(n-2)+n+3, a(0)=a(1)=0.

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> F(n+3)+3*F(n+1)-n-5); # G. C. Greubel, Jul 08 2019
  • Magma
    I:=[0, 0, 4, 9]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-Self(n-3)+Self(n-4): n in [1..37]]; // Bruno Berselli, May 10 2012
    
  • Magma
    F:=Fibonacci; [F(n+3)+3*F(n+1)-n-5: n in [0..40]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==0, a[n]==a[n-1] +a[n-2] +n+2}, a, {n, 40}] (* Bruno Berselli, May 10 2012 *)
    LinearRecurrence[{3,-2,-1,1},{0,0,4,9},40] (* Harvey P. Dale, Jul 24 2013 *)
    With[{F=Fibonacci}, Table[F[n+3]+2*F[n+1]-n-5, {n, 40}]] (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    concat(vector(2), Vec(x^2*(4-3*x)/((1-x)^2*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Mar 11 2017
    
  • PARI
    vector(40, n, n--; f=fibonacci; f(n+3)+3*f(n+1)-n-5) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    f=fibonacci; [f(n+3)+3*f(n+1)-n-5 for n in (0..40)] # G. C. Greubel, Jul 08 2019
    

Formula

G.f.: x^2*(4-3*x)/((1-x)^2*(1-x-x^2)). - Bruno Berselli, May 10 2012
a(n) = A210677(n)-1. - Bruno Berselli, May 10 2012
a(0)=0, a(1)=0, a(2)=4, a(3)=9, a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). - Harvey P. Dale, Jul 24 2013
a(n) = -5 + (2^(-1-n)*((1-sqrt(5))^n*(-7+5*sqrt(5)) + (1+sqrt(5))^n*(7+5*sqrt(5)))) / sqrt(5) - n. - Colin Barker, Mar 11 2017
a(n) = Fibonacci(n+3) + 3*Fibonacci(n+1) - n - 5. - G. C. Greubel, Jul 08 2019
Showing 1-6 of 6 results.