A213580
Principal diagonal of the convolution array A213579.
Original entry on oeis.org
1, 5, 15, 35, 74, 146, 277, 511, 925, 1651, 2916, 5108, 8889, 15385, 26507, 45491, 77806, 132678, 225645, 382835, 648121, 1095075, 1846920, 3109800, 5228209, 8777261, 14716167, 24643331, 41220050, 68873786, 114964741, 191719783
Offset: 1
-
F:=Fibonacci;; List([1..40], n-> F(n+3) +n*F(n+2) -2*(n+1)); # G. C. Greubel, Jul 08 2019
-
F:=Fibonacci; [F(n+3) + n*F(n+2) -2*(n+1): n in [1..40]]; // G. C. Greubel, Jul 08 2019
-
(* First program *)
b[n_]:= Fibonacci[n]; c[n_]:= n;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213579 *)
r[n_]:= Table[T[n, k], {k, 40}]
d = Table[T[n, n], {n, 1, 40}] (* A213580 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A053808 *)
(* Second program *)
Table[Fibonacci[n+3] + n*Fibonacci[n+2] -2*(n+1), {n, 40}] (* G. C. Greubel, Jul 08 2019 *)
-
vector(40, n, f=fibonacci; f(n+3) +n*f(n+2) -2*(n+1)) \\ G. C. Greubel, Jul 08 2019
-
f=fibonacci; [f(n+3) +n*f(n+2) -2*(n+1) for n in (1..40)] # G. C. Greubel, Jul 08 2019
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
Original entry on oeis.org
1, 5, 15, 36, 76, 148, 273, 485, 839, 1424, 2384, 3952, 6505, 10653, 17383, 28292, 45964, 74580, 120905, 195885, 317231, 513600, 831360, 1345536, 2177521, 3523733, 5701983, 9226500, 14929324, 24156724, 39087009, 63244757, 102332855, 165578768, 267912848
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. Freixas and S. Kurz, The golden number and Fibonacci sequences in the design of voting structures, 2012. - From _N. J. A. Sloane_, Dec 29 2012
- W. Lang, Problem B-858, Fibonacci Quarterly, 36,3 (1998) 373-374; Solution, ibid. 37,2 (1999) 183-184.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Right-hand column 7 of triangle
A011794.
-
List([0..40], n-> Fibonacci(n+8) - (n^2 +8*n+20)); # G. C. Greubel, Jul 06 2019
-
[Fibonacci(n+8) - (n^2+8*n+20): n in [0..40]]; // G. C. Greubel, Jul 06 2019
-
Table[Fibonacci[n+8] -(n^2 +8*n+20), {n,0,40}] (* G. C. Greubel, Jul 06 2019 *)
LinearRecurrence[{4,-5,1,2,-1},{1,5,15,36,76},40] (* Harvey P. Dale, Apr 14 2022 *)
-
vector(40, n, n--; fibonacci(n+8) - (n^2 +8*n+20)) \\ G. C. Greubel, Jul 06 2019
-
[fibonacci(n+8) - (n^2 +8*n+20) for n in (0..20)] # G. C. Greubel, Jul 06 2019
A213584
Rectangular array: (row n) = b**c, where b(h) = F(h+1), c(h) = n-1+h, where F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 21, 16, 10, 4, 40, 32, 22, 13, 5, 72, 59, 43, 28, 16, 6, 125, 104, 78, 54, 34, 19, 7, 212, 178, 136, 97, 65, 40, 22, 8, 354, 299, 231, 168, 116, 76, 46, 25, 9, 585, 496, 386, 284, 200, 135, 87, 52, 28, 10, 960, 816, 638, 473, 337, 232, 154, 98, 58, 31, 11
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1...4....10...21...40....72
2...7....16...32...59....104
3...10...22...43...78....136
4...13...28...54...97....168
5...16...34...65...116...200
6...19...40...76...135...232
-
Flat(List([1..12], n-> List([1..n], k-> Fibonacci(n-k+5) + k*Fibonacci(n-k+4) -(2*n+5)))) # G. C. Greubel, Jul 08 2019
-
[[Fibonacci(n-k+5) + k*Fibonacci(n-k+4) -(2*n+5): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019
-
(* First program *)
b[n_]:= Fibonacci[n+1]; c[n_]:= n;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213584 *)
r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
d = Table[T[n, n], {n, 1, 40}] (* A213585 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A213586 *)
(* Second program *)
Table[Fibonacci[n-k+5] + k*Fibonacci[n-k+4] -2*n-5, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *)
-
t(n,k) = fibonacci(n-k+5) + k*fibonacci(n-k+4) -(2*n+5);
for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 08 2019
-
[[fibonacci(n-k+5) + k*fibonacci(n-k+4) -(2*n+5) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019
A023552
Convolution of natural numbers >= 3 and Fibonacci numbers.
Original entry on oeis.org
3, 7, 15, 28, 50, 86, 145, 241, 397, 650, 1060, 1724, 2799, 4539, 7355, 11912, 19286, 31218, 50525, 81765, 132313, 214102, 346440, 560568, 907035, 1467631, 2374695, 3842356, 6217082, 10059470, 16276585, 26336089, 42612709, 68948834, 111561580, 180510452
Offset: 1
-
F:=Fibonacci; List([1..40], n-> F(n+4)+2*F(n+2)-n-5); # G. C. Greubel, Jul 08 2019
-
F:=Fibonacci; [F(n+4)+2*F(n+2)-n-5: n in [1..40]]; // G. C. Greubel, Jul 08 2019
-
LinearRecurrence[{3,-2,-1,1},{3,7,15,28},40] (* or *) Rest[ CoefficientList[Series[(x(3-2x))/((1-x-x^2)(1-x)^2),{x,0,40}],x]] (* Harvey P. Dale, Apr 24 2011 *)
With[{F=Fibonacci}, Table[F[n+4]+2*F[n+2]-n-5, {n,40}]] (* G. C. Greubel, Jul 08 2019 *)
-
Vec(x*(3-2*x)/((1-x-x^2)*(1-x)^2) + O(x^40)) \\ Colin Barker, Mar 11 2017
-
vector(40, n, f=fibonacci; f(n+4)+2*f(n+2)-n-5) \\ G. C. Greubel, Jul 08 2019
-
f=fibonacci; [f(n+4)+2*f(n+2)-n-5 for n in (1..40)] # G. C. Greubel, Jul 08 2019
A210730
a(n) = a(n-1) + a(n-2) + n + 2 with n>1, a(0)=a(1)=0.
Original entry on oeis.org
0, 0, 4, 9, 19, 35, 62, 106, 178, 295, 485, 793, 1292, 2100, 3408, 5525, 8951, 14495, 23466, 37982, 61470, 99475, 160969, 260469, 421464, 681960, 1103452, 1785441, 2888923, 4674395, 7563350, 12237778, 19801162, 32038975, 51840173, 83879185, 135719396
Offset: 0
Cf.
A033818: a(n)=a(n-1)+a(n-2)+n-5, a(0)=a(1)=0 (except first 2 terms and sign).
Cf.
A002062: a(n)=a(n-1)+a(n-2)+n-4, a(0)=a(1)=0 (except the first term and sign).
Cf.
A065220: a(n)=a(n-1)+a(n-2)+n-3, a(0)=a(1)=0.
Cf.
A001924: a(n)=a(n-1)+a(n-2)+n-1, a(0)=a(1)=0 (except the first term).
Cf.
A023548: a(n)=a(n-1)+a(n-2)+n, a(0)=a(1)=0 (except first 2 terms).
Cf.
A023552: a(n)=a(n-1)+a(n-2)+n+1, a(0)=a(1)=0 (except first 2 terms).
Cf.
A210731: a(n)=a(n-1)+a(n-2)+n+3, a(0)=a(1)=0.
-
F:=Fibonacci;; List([0..40], n-> F(n+3)+3*F(n+1)-n-5); # G. C. Greubel, Jul 08 2019
-
I:=[0, 0, 4, 9]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-Self(n-3)+Self(n-4): n in [1..37]]; // Bruno Berselli, May 10 2012
-
F:=Fibonacci; [F(n+3)+3*F(n+1)-n-5: n in [0..40]]; // G. C. Greubel, Jul 08 2019
-
RecurrenceTable[{a[0]==a[1]==0, a[n]==a[n-1] +a[n-2] +n+2}, a, {n, 40}] (* Bruno Berselli, May 10 2012 *)
LinearRecurrence[{3,-2,-1,1},{0,0,4,9},40] (* Harvey P. Dale, Jul 24 2013 *)
With[{F=Fibonacci}, Table[F[n+3]+2*F[n+1]-n-5, {n, 40}]] (* G. C. Greubel, Jul 08 2019 *)
-
concat(vector(2), Vec(x^2*(4-3*x)/((1-x)^2*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Mar 11 2017
-
vector(40, n, n--; f=fibonacci; f(n+3)+3*f(n+1)-n-5) \\ G. C. Greubel, Jul 08 2019
-
f=fibonacci; [f(n+3)+3*f(n+1)-n-5 for n in (0..40)] # G. C. Greubel, Jul 08 2019
Showing 1-6 of 6 results.
Comments