A213583 Principal diagonal of the convolution array A213582.
1, 9, 38, 120, 327, 819, 1948, 4482, 10085, 22341, 48930, 106236, 229075, 491175, 1048184, 2227782, 4718097, 9960921, 20970910, 44039520, 92273951, 192937179, 402652308, 838859850, 1744829437, 3623877549, 7516191578, 15569255172, 32212253355, 66571991631
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-19,25,-16,4).
Programs
-
GAP
List([1..40], n-> (n+1)*(2^(n+2) -3*n-4)/2); # G. C. Greubel, Jul 08 2019
-
Magma
[(n+1)*(2^(n+2) -3*n-4)/2: n in [1..40]]; // G. C. Greubel, Jul 08 2019
-
Mathematica
(* First program *) b[n_]:= 2^n - 1; c[n_]:= n; T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213582 *) r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *) Table[T[n, n], {n, 1, 40}] (* A213583 *) s[n_]:= Sum[T[i, n+1-i], {i, 1, n}] Table[s[n], {n, 1, 50}] (* A156928 *) (* Second program *) LinearRecurrence[{7,-19,25,-16,4},{1,9,38,120,327},40] (* Harvey P. Dale, Apr 06 2013 *) Table[(n+1)*(2^(n+2)-3*n-4)/2, {n,40}] (* G. C. Greubel, Jul 08 2019 *)
-
PARI
Vec(x*(1 + 2*x - 6*x^2) / ((1 - x)^3*(1 - 2*x)^2) + O(x^40)) \\ Colin Barker, Nov 04 2017
-
PARI
vector(40, n, (n+1)*(2^(n+2) -3*n-4)/2) \\ G. C. Greubel, Jul 08 2019
-
Sage
[(n+1)*(2^(n+2) -3*n-4)/2 for n in (1..40)] # G. C. Greubel, Jul 08 2019
Formula
a(n) = 7*a(n-1) - 19*a(n-2) + 25*a(n-3) - 16*a(n-4) + 4*a(n-5).
G.f.: x*(1 + 2*x - 6*x^2) / ((1 - x)^3*(1 - 2*x)^2).
a(n) = (n+1)*(2^(n+2) - 3*n -4)/2. - Colin Barker, Nov 04 2017
E.g.f.: (4*(1+2*x)*exp(2*x) - (3*x^2+10*x+4)*exp(x))/2. - G. C. Greubel, Jul 08 2019