cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213583 Principal diagonal of the convolution array A213582.

Original entry on oeis.org

1, 9, 38, 120, 327, 819, 1948, 4482, 10085, 22341, 48930, 106236, 229075, 491175, 1048184, 2227782, 4718097, 9960921, 20970910, 44039520, 92273951, 192937179, 402652308, 838859850, 1744829437, 3623877549, 7516191578, 15569255172, 32212253355, 66571991631
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Crossrefs

Programs

  • GAP
    List([1..40], n-> (n+1)*(2^(n+2) -3*n-4)/2); # G. C. Greubel, Jul 08 2019
  • Magma
    [(n+1)*(2^(n+2) -3*n-4)/2: n in [1..40]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= 2^n - 1; c[n_]:= n;
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213582 *)
    r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *)
    Table[T[n, n], {n, 1, 40}] (* A213583 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A156928 *)
    (* Second program *)
    LinearRecurrence[{7,-19,25,-16,4},{1,9,38,120,327},40] (* Harvey P. Dale, Apr 06 2013 *)
    Table[(n+1)*(2^(n+2)-3*n-4)/2, {n,40}] (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    Vec(x*(1 + 2*x - 6*x^2) / ((1 - x)^3*(1 - 2*x)^2) + O(x^40)) \\ Colin Barker, Nov 04 2017
    
  • PARI
    vector(40, n, (n+1)*(2^(n+2) -3*n-4)/2) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    [(n+1)*(2^(n+2) -3*n-4)/2 for n in (1..40)] # G. C. Greubel, Jul 08 2019
    

Formula

a(n) = 7*a(n-1) - 19*a(n-2) + 25*a(n-3) - 16*a(n-4) + 4*a(n-5).
G.f.: x*(1 + 2*x - 6*x^2) / ((1 - x)^3*(1 - 2*x)^2).
a(n) = (n+1)*(2^(n+2) - 3*n -4)/2. - Colin Barker, Nov 04 2017
E.g.f.: (4*(1+2*x)*exp(2*x) - (3*x^2+10*x+4)*exp(x))/2. - G. C. Greubel, Jul 08 2019