A213586 Antidiagonal sums of the convolution array A213584.
1, 6, 20, 51, 112, 224, 421, 758, 1324, 2263, 3808, 6336, 10457, 17158, 28036, 45675, 74256, 120544, 195485, 316790, 513116, 830831, 1344960, 2176896, 3523057, 5701254, 9225716, 14928483, 24155824, 39086048, 63243733, 102331766
Offset: 1
Examples
From _John M. Campbell_, Jan 25 2013: (Start) There are a(3) = 20 bit strings of length 3+5 with the pattern 01 at least thrice, and without the pattern 110: 00010101, 00100101, 00101001, 00101010, 00101011, 01000101, 01001001, 01001010, 01001011, 01010001, 01010010, 01010011, 01010100, 01010101, 01010111, 10010101, 10100101, 10101001, 10101010, 10101011. (End)
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
GAP
List([1..40], n-> Fibonacci(n+8) -(21+10*n+2*n^2)) # G. C. Greubel, Jul 06 2019
-
Magma
[Fibonacci(n+8) -(21+10*n+2*n^2): n in [1..40]]; // G. C. Greubel, Jul 06 2019
-
Mathematica
(See A213584.) With[{F = Fibonacci}, Table[F[n+8] -(21+10*n+2*n^2), {n,40}]] (* G. C. Greubel, Jul 06 2019 *)
-
PARI
vector(40, n, fibonacci(n+8) -(21+10*n+2*n^2)) \\ G. C. Greubel, Jul 06 2019
-
Sage
[fibonacci(n+8) -(21+10*n+2*n^2) for n in (1..40)] # G. C. Greubel, Jul 06 2019
Formula
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1 + 2*x + x^2)/((1 - x - x^2)*(1 - x)^3).
a(n) = Fibonacci(n+8) - (21 + 10*n + 2*n^2). - G. C. Greubel, Jul 06 2019
Comments