cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213586 Antidiagonal sums of the convolution array A213584.

Original entry on oeis.org

1, 6, 20, 51, 112, 224, 421, 758, 1324, 2263, 3808, 6336, 10457, 17158, 28036, 45675, 74256, 120544, 195485, 316790, 513116, 830831, 1344960, 2176896, 3523057, 5701254, 9225716, 14928483, 24155824, 39086048, 63243733, 102331766
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2012

Keywords

Comments

a(n) is the number of bit strings of length n+5 with the pattern 01 at least thrice, and without the pattern 110, see example. - John M. Campbell, Jan 25 2013

Examples

			From _John M. Campbell_, Jan 25 2013: (Start)
There are a(3) = 20 bit strings of length 3+5 with the pattern 01 at least thrice, and without the pattern 110:
00010101, 00100101, 00101001, 00101010, 00101011,
01000101, 01001001, 01001010, 01001011, 01010001,
01010010, 01010011, 01010100, 01010101, 01010111,
10010101, 10100101, 10101001, 10101010, 10101011.
(End)
		

Crossrefs

Programs

  • GAP
    List([1..40], n-> Fibonacci(n+8) -(21+10*n+2*n^2)) # G. C. Greubel, Jul 06 2019
  • Magma
    [Fibonacci(n+8) -(21+10*n+2*n^2): n in [1..40]]; // G. C. Greubel, Jul 06 2019
    
  • Mathematica
    (See A213584.)
    With[{F = Fibonacci}, Table[F[n+8] -(21+10*n+2*n^2), {n,40}]] (* G. C. Greubel, Jul 06 2019 *)
  • PARI
    vector(40, n, fibonacci(n+8) -(21+10*n+2*n^2)) \\ G. C. Greubel, Jul 06 2019
    
  • Sage
    [fibonacci(n+8) -(21+10*n+2*n^2) for n in (1..40)] # G. C. Greubel, Jul 06 2019
    

Formula

a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1 + 2*x + x^2)/((1 - x - x^2)*(1 - x)^3).
a(n) = Fibonacci(n+8) - (21 + 10*n + 2*n^2). - G. C. Greubel, Jul 06 2019