cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213587 Rectangular array: (row n) = b**c, where b(h) = F(h+1), c(h) = F(n+h), F = A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 22, 17, 11, 5, 45, 37, 27, 18, 8, 88, 75, 59, 44, 29, 13, 167, 146, 120, 96, 71, 47, 21, 310, 276, 234, 195, 155, 115, 76, 34, 566, 511, 443, 380, 315, 251, 186, 123, 55, 1020, 931, 821, 719, 614, 510, 406, 301, 199, 89, 1819, 1675, 1497, 1332, 1162, 994, 825, 657, 487, 322, 144
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Comments

Principal diagonal: A213588.
Antidiagonal sums: A213589.
Row 1, (1,2,3,5,...)**(1,2,3,5,...): A004798.
Row 2, (1,2,3,5,...)**(2,3,5,8,...)
Row 3, (1,2,3,5,...)**(3,5,8,13,...)
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
  1....4....10....22....45....88....167
  2....7....17....37....75....146...276
  3....11...27....59....120...234...443
  5....18...44....96....195...380...719
  8....29...71....155...315...614...1162
  13...47...115...251...510...994...1881
		

Crossrefs

Programs

  • GAP
    Flat( List([1..12], n-> List([1..n], k-> ((n-k+1)*Lucas(1,-1, n+3)[2] - Fibonacci(n-k+1)*Lucas(1,-1,k-1)[2])/5 ))); # G. C. Greubel, Jul 08 2019
  • Magma
    [[((n-k+1)*Lucas(n+3) - Fibonacci(n-k+1)*Lucas(k-1))/5: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    (* First program *)
    b[n_]:= Fibonacci[n+1]; c[n_]:= Fibonacci[n+1];
    T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
    TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213587 *)
    r[n_]:= Table[T[n, k], {k, 40}]  (* columns of antidiagonal triangle *)
    Table[T[n, n], {n, 1, 40}] (* A213588 *)
    s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213589 *)
    (* Second program *)
    Table[((n-k+1)*LucasL[n+3] - Fibonacci[n-k+1]*LucasL[k-1])/5, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    lucas(n) = fibonacci(n+1) + fibonacci(n-1);
    t(n,k) = ((n-k+1)*lucas(n+3) - fibonacci(n-k+1)*lucas(k-1))/5;
    for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    [[((n-k+1)*lucas_number2(n+3,1,-1) - fibonacci(n-k+1)* lucas_number2(k-1, 1,-1))/5 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 08 2019
    

Formula

Rows: T(n,k) = 2*T(n,k-1) + T(n,k-2) - 2*T(n,k-3) - T(n,k-4).
Columns: T(n,k) = T(n-1,k) + T(n-2,k).
G.f. for row n: f(x)/g(x), where f(x) = F(n+1) + F(n+2)*x + F(n)*x^2 and g(x) = (1 - x - x^2)^2.
T(n, k) = (k*Lucas(n+k+2) - Fibonacci(k)*Lucas(n-1))/5. - G. C. Greubel, Jul 08 2019