A213588 Principal diagonal of the convolution array A213587.
1, 7, 27, 96, 315, 994, 3043, 9123, 26909, 78370, 225911, 645732, 1832677, 5170111, 14509695, 40537284, 112805043, 312808198, 864707719, 2383649115, 6554153921, 17980221382, 49222822127, 134495771976, 366850762825
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-5,-5,5,-1).
Programs
-
GAP
List([1..30], n-> (n*Lucas(1,-1,2*n+2)[2] - Fibonacci(n)*Lucas(1,-1,n-1)[2])/5); # G. C. Greubel, Jul 08 2019
-
Magma
[(n*Lucas(2*n+2) - Fibonacci(n)*Lucas(n-1))/5: n in [1..30]]; // G. C. Greubel, Jul 08 2019
-
Mathematica
(* First program *) b[n_]:= Fibonacci[n+1]; c[n_]:= Fibonacci[n+1]; T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213587 *) r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *) Table[T[n, n], {n, 1, 40}] (* A213588 *) s[n_]:= Sum[T[i, n+1-i], {i, 1, n}] Table[s[n], {n, 1, 50}] (* A213589 *) (* Second program *) Table[(n*LucasL[2n+2] -Fibonacci[n]*LucasL[n-1])/5, {n, 30}] (* G. C. Greubel, Jul 08 2019 *)
-
PARI
lucas(n) = fibonacci(n+1) + fibonacci(n-1); vector(30, n, (n*lucas(2*n+2) - fibonacci(n)*lucas(n-1))/5) \\ G. C. Greubel, Jul 08 2019
-
Sage
[(n*lucas_number2(2*n+2,1,-1) - fibonacci(n)*lucas_number2(n-1, 1, -1))/5 for n in (1..30)] # G. C. Greubel, Jul 08 2019
Formula
a(n) = 5*a(n-1) - 5*a(n-2) - 5*a(n-3) + 5*a(n-4) - a(n-5).
G.f.: x*(1 + 2*x - 3*x^2 + x^3)/((1 + x)*(1 - 3*x + x^2)^2).
a(n) = (n*Lucas(2*n+2) - Fibonacci(n)*Lucas(n-1))/5. - G. C. Greubel, Jul 08 2019