A213589 Antidiagonal sums of the convolution array A213587.
1, 6, 20, 55, 135, 308, 668, 1395, 2830, 5610, 10914, 20904, 39515, 73860, 136720, 250937, 457137, 827260, 1488190, 2662905, 4741946, 8407236, 14846100, 26120400, 45801925, 80064018, 139553708, 242597035, 420678315, 727792580
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
Programs
-
GAP
F:=Fibonacci;; List([1..35], n-> (n+1)*((n+2)*F(n+3) + 2*(n-2)*F(n+2))/10) # G. C. Greubel, Jul 08 2019
-
Magma
F:=Fibonacci; [(n+1)*((n+2)*F(n+3) + 2*(n-2)*F(n+2))/10: n in [1..35]]; // G. C. Greubel, Jul 08 2019
-
Mathematica
(* First program *) b[n_]:= Fibonacci[n+1]; c[n_]:= Fibonacci[n+1]; T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]] Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213587 *) r[n_]:= Table[T[n, k], {k, 40}] (* columns of antidiagonal triangle *) Table[T[n, n], {n, 1, 40}] (* A213588 *) s[n_]:= Sum[T[i, n+1-i], {i, 1, n}] Table[s[n], {n, 1, 50}] (* A213589 *) (* Second program *) Table[(n+1)*(n*LucasL[n+3] -2*Fibonacci[n])/10, {n, 35}] (* G. C. Greubel, Jul 08 2019 *)
-
Maxima
a(n):=(n+1)/2*sum((n-j)*binomial(n-j+1,j),j,0,(n+1)/2); /* Vladimir Kruchinin, Apr 09 2016 */
-
PARI
vector(35, n, f=fibonacci; (n+1)*((n+2)*f(n+3)+ 2*(n-2)*f(n+2) )/10) \\ G. C. Greubel, Jul 08 2019
-
Sage
f=fibonacci; [(n+1)*((n+2)*f(n+3)+ 2*(n-2)*f(n+2) )/10 for n in (1..35)] # G. C. Greubel, Jul 08 2019
Formula
a(n) = 3*a(n-1) - 5*a(n-3) + 3*a(n-5) + a(n-6).
G.f.: x*(1 + 3*x + 2*x^2)/(1 - x - x^2)^3.
a(n) = (n+1)/2*Sum_{j=0..(n+1)/2}((n-j)*binomial(n-j+1,j)). - Vladimir Kruchinin, Apr 09 2016
a(n) = (n+1)*(n*Lucas(n+3) - 2*Fibonacci(n))/10 = (n+1)*((n+2) *Fibonacci(n+3) + 2*(n-2)*Fibonacci(n+2))/10. - G. C. Greubel, Jul 08 2019