cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213592 Expansion of q^(-1/3) * phi(q^2) * c(q) / 3 in powers of q where phi() is a Ramanujan theta function and c() is a cubic AGM theta function.

Original entry on oeis.org

1, 1, 4, 2, 6, 1, 6, 2, 7, 4, 8, 4, 10, 2, 10, 0, 9, 6, 12, 6, 10, 1, 14, 4, 16, 6, 8, 8, 12, 2, 12, 0, 20, 7, 20, 6, 10, 4, 20, 6, 11, 8, 16, 8, 20, 4, 14, 0, 20, 10, 12, 8, 26, 2, 22, 6, 15, 10, 20, 12, 18, 0, 28, 0, 20, 9, 20, 14, 16, 6, 10, 6, 24, 12, 32
Offset: 0

Views

Author

Michael Somos, Jun 15 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + 4*x^2 + 2*x^3 + 6*x^4 + x^5 + 6*x^6 + 2*x^7 + 7*x^8 + 4*x^9 + ...
q + q^4 + 4*q^7 + 2*q^10 + 6*q^13 + q^16 + 6*q^19 + 2*q^22 + 7*q^25 + ...
		

Programs

  • Mathematica
     QP := QPochhammer; a[n_]:= SeriesCoefficient[(QP[q^3]^3*QP[q^4]^5)/( QP[q]*QP[q^2]^2*QP[q^8]^2), {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jan 07 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A)^5 / (eta(x + A) * eta(x^2 + A)^2 * eta(x^8 + A)^2), n))}

Formula

Expansion of q^(-1/3) * eta(q^3)^3 * eta(q^4)^5 / (eta(q) * eta(q^2)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 24 sequence [ 1, 3, -2, -2, 1, 0, 1, 0, -2, 3, 1, -5, 1, 3, -2, 0, 1, 0, 1, -2, -2, 3, 1, -3, ...].
a(16*n + 15) = 0. a(4*n + 1) = a(n).