A213592 Expansion of q^(-1/3) * phi(q^2) * c(q) / 3 in powers of q where phi() is a Ramanujan theta function and c() is a cubic AGM theta function.
1, 1, 4, 2, 6, 1, 6, 2, 7, 4, 8, 4, 10, 2, 10, 0, 9, 6, 12, 6, 10, 1, 14, 4, 16, 6, 8, 8, 12, 2, 12, 0, 20, 7, 20, 6, 10, 4, 20, 6, 11, 8, 16, 8, 20, 4, 14, 0, 20, 10, 12, 8, 26, 2, 22, 6, 15, 10, 20, 12, 18, 0, 28, 0, 20, 9, 20, 14, 16, 6, 10, 6, 24, 12, 32
Offset: 0
Keywords
Examples
1 + x + 4*x^2 + 2*x^3 + 6*x^4 + x^5 + 6*x^6 + 2*x^7 + 7*x^8 + 4*x^9 + ... q + q^4 + 4*q^7 + 2*q^10 + 6*q^13 + q^16 + 6*q^19 + 2*q^22 + 7*q^25 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
QP := QPochhammer; a[n_]:= SeriesCoefficient[(QP[q^3]^3*QP[q^4]^5)/( QP[q]*QP[q^2]^2*QP[q^8]^2), {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jan 07 2018 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A)^5 / (eta(x + A) * eta(x^2 + A)^2 * eta(x^8 + A)^2), n))}
Formula
Expansion of q^(-1/3) * eta(q^3)^3 * eta(q^4)^5 / (eta(q) * eta(q^2)^2 * eta(q^8)^2) in powers of q.
Euler transform of period 24 sequence [ 1, 3, -2, -2, 1, 0, 1, 0, -2, 3, 1, -5, 1, 3, -2, 0, 1, 0, 1, -2, -2, 3, 1, -3, ...].
a(16*n + 15) = 0. a(4*n + 1) = a(n).
Comments