cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213598 Number of partitions of n in which no parts are multiples of 49.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173524
Offset: 0

Views

Author

Michael Somos, Jun 14 2012

Keywords

Comments

For n<49 we have a(n)=A000041(n), for n>=49 a(n)!=A000041(n).
In Fricke page 401, he gives the expansion sigma(omega) = q^4 + q^6 + 2q^8 + 3q^10 + 5q^12 + 7q^14 + 11q^16 + 15q^18 + ... where q = exp( Pi i omega).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
G.f. = q^2 + q^3 + 2*q^4 + 3*q^5 + 5*q^6 + 7*q^7 + 11*q^8 + 15*q^9 + 22*q^10 + ...
		

References

  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 401. Eq. (49)

Crossrefs

Cf. A000009 (m=2), A000726 (m=3), A001935 (m=4), A035959 (m=5), A219601 (m=6), A035985 (m=7), A261775 (m=8), A104502 (m=9), A261776 (m=10), A092885 (m=25), this sequence (m=49).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 49, n, 49}] / Product[ 1 - x^k, {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^49] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, May 13 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^49 + A) / eta(x + A), n))};

Formula

Expansion of q^(-2) * eta(q^49) / eta(q) in powers of q.
Euler transform of period 49 sequence [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ...].
Given g.f. A(x) then B(x) = x^2 * A(x) satisfies 0 = f(B(x), B(x^2),
B(x^4)) where f(u, v, w) = u * v * w * (1 - 7*v^2) - (v - w) * (u - v) * (v^2 - u*w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (49 t)) = 1 / (7 f(t)) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(49*k)) / (1 - x^k).
a(n) ~ exp(4*Pi*sqrt(2*n)/7) / (2^(1/4) * 7^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
a(n) = (1/n)*Sum_{k=1..n} A287926(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Jun 16 2017