A213604 Cumulative sums of digital roots of A005891(n).
1, 7, 14, 18, 24, 28, 35, 41, 42, 48, 55, 59, 65, 69, 76, 82, 83, 89, 96, 100, 106, 110, 117, 123, 124, 130, 137, 141, 147, 151, 158, 164, 165, 171, 178, 182, 188, 192, 199, 205, 206, 212, 219, 223, 229, 233, 240, 246, 247, 253, 260, 264, 270, 274, 281, 287
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Crossrefs
Cf. A005891.
Programs
-
Mathematica
CoefficientList[Series[(1 + 6*x + 7*x^2 + 4 x^3 + 6*x^4 + 4*x^5 + 7*x^6 + 6*x^7)/((x - 1)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)), {x, 0, 50}], x] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,1,-1}, {1,7,14,18,24, 28,35,41,42}, 50](* G. C. Greubel, Feb 26 2017 *)
-
PARI
x='x+O('x^50); Vec((1+6*x+7*x^2+4x^3+6*x^4+4*x^5+7*x^6+6*x^7) / ((x-1)^2 * (1+x+x^2+x^3+x^4+x^5+x^6+x^7))) \\ G. C. Greubel, Feb 26 2017
Formula
a(n+9) = -a(n) + a(n+1) + a(n+8), a(0)=1, a(1)=7, a(2)=14, a(3)=18, a(4)=24, a(5)=28, a(6)=35, a(7)=41, a(8)=42.
G.f.: (1+6*x+7*x^2+4x^3+6*x^4+4*x^5+7*x^6+6*x^7) / ((x-1)^2 * (1+x+x^2+x^3+x^4+x^5+x^6+x^7)).