A213627 Expansion of psi(x)^4 / psi(x^3) in powers of x where psi() is a Ramanujan theta function.
1, 4, 6, 7, 9, 6, 7, 15, 12, 12, 13, 6, 12, 18, 18, 13, 15, 18, 12, 24, 12, 13, 27, 12, 24, 15, 12, 24, 28, 30, 12, 27, 18, 12, 30, 18, 19, 27, 24, 24, 27, 24, 36, 30, 18, 19, 24, 24, 24, 45, 18, 12, 45, 30, 24, 28, 18, 36, 36, 36, 24, 15, 36, 36, 51, 18, 25
Offset: 0
Keywords
Examples
G.f. = 1 + 4*x + 6*x^2 + 7*x^3 + 9*x^4 + 6*x^5 + 7*x^6 + 15*x^7 + 12*x^8 + ... G.f. = q + 4*q^9 + 6*q^17 + 7*q^25 + 9*q^33 + 6*q^41 + 7*q^49 + 15*q^57 + 12*q^65 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 2501 terms from G. C. Greubel)
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A212907.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)* add([-3, 4, -4, 3, -4, 4][1+irem(d, 6)]*d, d=numtheory[divisors](j)), j=1..n)/n) end: seq(a(n), n=0..100); # Alois P. Heinz, Aug 18 2020
-
Mathematica
a[ n_] := SeriesCoefficient[ 1/8 EllipticTheta[ 2, 0, q]^4 / EllipticTheta[ 2, 0, q^3], {q, 0, 2 n + 1/4}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A) / (eta(x + A)^4 * eta(x^6 + A)^2), n))};
Formula
Expansion of q^(-1/8) * eta(q^2)^8 * eta(q^3) / (eta(q)^4 * eta(q^6)^2) in powers of q.
a(3*n + 2) = 6 * A212907(n).
Euler transform of period 6 sequence [4, -4, 3, -4, 4, -3, ...]. - Georg Fischer, Aug 18 2020
Comments