A213637
Values of n for which A213636(n) = 1.
Original entry on oeis.org
1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 67, 69, 70, 71, 73, 75, 76, 77, 79, 81, 82, 83, 85, 87, 88, 89, 91, 93, 94, 95, 96, 97, 99
Offset: 1
-
(See A213636.)
rem[n_]:=Module[{lnd=First[Complement[Range[n],Divisors[n]]]},Mod[n,lnd]];Flatten[Position[Join[{1,2},Array[rem,100,3]],1]] (* Harvey P. Dale, Feb 07 2014 *)
Original entry on oeis.org
2, 6, 8, 12, 14, 18, 20, 26, 30, 32, 38, 42, 44, 50, 54, 56, 62, 66, 68, 72, 74, 78, 80, 86, 90, 92, 98, 102, 104, 110, 114, 116, 122, 126, 128, 132, 134, 138, 140, 146, 150, 152, 158, 162, 164, 170, 174, 176, 182, 186, 188, 192, 194, 198, 200, 206, 210
Offset: 1
A326778
a(n) is the least k such that A213636(k) = n.
Original entry on oeis.org
1, 2, 48, 24, 180, 300, 17640, 20160, 22680, 25200, 166320, 83160, 4324320, 9369360, 2162160, 7207200, 98017920, 49008960, 2793510720, 2095133040, 1396755360, 698377680, 1847208963600, 1927522396800, 2007835830000, 2088149263200, 2168462696400, 2248776129600
Offset: 1
-
A213636(n) = for (d=2, oo, if (n%d, return (n%d)))
a(n) = my (l=lcm([1..n])); forstep (x=l, oo, l, if (A213636(x)==n, return (x/l)))
Original entry on oeis.org
0, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 2, 6, 4, 7, 5, 8, 4, 9, 6, 10, 7, 11, 4, 12, 8, 13, 9, 14, 7, 15, 10, 16, 11, 17, 7, 18, 12, 19, 13, 20, 10, 21, 14, 22, 15, 23, 9, 24, 16, 25, 17, 26, 13, 27, 18, 28, 19, 29, 8, 30, 20, 31, 21, 32, 16, 33, 22, 34, 23, 35, 14, 36, 24, 37
Offset: 1
-
y=120; z=2000;
t = Table[k := 1; While[Mod[n, k] == 0, k++]; k, {n, 1, z}] (* A007978 *)
Table[Floor[n/t[[n]]], {n, 1, y}] (* A213633 *)
Table[n - Floor[n/t[[n]]], {n, 1, y}] (* A213634 *)
Table[t[[n]]*Floor[n/t[[n]]], {n, 1, y}] (* A213635 *)
t1 = Table[n - t[[n]]*Floor[n/t[[n]]], {n, 1, z}] (* A213636 *)
Flatten[Position[t1, 1]] (* A213637 *)
Flatten[Position[t1, 2]] (* A213638 *)
A374381
Triangle T(n, k), n > 0, k = 0..n-1, read by rows; T(n, k) = (n mod m) - (k mod m) where m = A007978(n-k).
Original entry on oeis.org
1, 2, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 2, 1, 2, -1, -2, -1, -1, -1, 1, 2, 1, 1, 1, -1, 1, 2, -1, -2, -1, 1, -1, 2, -1, 1, -1, 1, -2, 1, -2, 1, -1, 1, 1, -1, -1, -1, 2, -1, 1, -1, -1, -1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, -1, -2, -1, -1, -1, -2, -1, -2, -1, -1, -1
Offset: 1
Triangle T(n, k) begins:
n n-th row
-- ---------------------------------------------
1 1
2 2, -1
3 1, -1, 1
4 1, -1, -1, -1
5 1, 1, 1, 2, 1
6 2, -1, -2, -1, -1, -1
7 1, 2, 1, 1, 1, -1, 1
8 2, -1, -2, -1, 1, -1, 2, -1
9 1, -1, 1, -2, 1, -2, 1, -1, 1
10 1, -1, -1, -1, 2, -1, 1, -1, -1, -1
11 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1
12 2, -1, -2, -1, -1, -1, -2, -1, -2, -1, -1, -1
-
T(n, k) = { for (m = 2, oo, my (d = (n%m) - (k%m)); if (d, return (d););); }
A360825
a(n) is the remainder after dividing n! by its least nondivisor.
Original entry on oeis.org
1, 1, 2, 2, 4, 1, 6, 2, 5, 1, 10, 1, 12, 3, 8, 1, 16, 1, 18, 4, 11, 1, 22, 22, 6, 5, 14, 1, 28, 1, 30, 33, 20, 31, 18, 1, 36, 7, 20, 1, 40, 1, 42, 8, 23, 1, 46, 19, 11, 9, 26, 1, 52, 30, 27, 10, 29, 1, 58, 1, 60, 43, 53, 56, 33, 1, 66, 12, 35, 1, 70, 1, 72, 27, 23
Offset: 0
a(5) = 5! mod 7 = 120 mod 7 = 1.
-
a[n_] := Module[{f = n!, m = n + 1}, While[Divisible[f, m], m++]; Mod[f, m]]; Array[a, 100, 0] (* Amiram Eldar, Feb 22 2023 *)
-
a(n) = my(k=1, r); while(!(r=(n! % (n+k))), k++); r; \\ Michel Marcus, Feb 22 2023
-
from functools import reduce
from sympy import nextprime
def A360825(n):
if n == 3: return 2
m = nextprime(n)
return reduce(lambda i, j: i*j%m,range(2,n+1),1)%m # Chai Wah Wu, Feb 22 2023
-
from functools import reduce
from sympy import nextprime
def A360825(n):
if n == 3: return 2
m = nextprime(n)
return (m-1)*pow(reduce(lambda i,j:i*j%m,range(n+1,m),1),-1,m)%m # Chai Wah Wu, Feb 23 2023
Showing 1-6 of 6 results.
Comments