A384620
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of (B(x)/x)^k, where B(x) is the g.f. of A213639.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 11, 38, 0, 1, 4, 18, 86, 357, 0, 1, 5, 26, 145, 815, 3832, 0, 1, 6, 35, 216, 1389, 8758, 45189, 0, 1, 7, 45, 300, 2095, 14967, 103056, 572378, 0, 1, 8, 56, 398, 2950, 22668, 175937, 1300586, 7676653, 0, 1, 9, 68, 511, 3972, 32091, 266470, 2214012, 17368633, 107971691, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 5, 11, 18, 26, 35, 45, ...
0, 38, 86, 145, 216, 300, 398, ...
0, 357, 815, 1389, 2095, 2950, 3972, ...
0, 3832, 8758, 14967, 22668, 32091, 43488, ...
0, 45189, 103056, 175937, 266470, 377620, 512705, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, 3*j)));
A213591
G.f. A(x) satisfies A( x - A(x)^2 ) = x.
Original entry on oeis.org
1, 1, 4, 24, 178, 1512, 14152, 142705, 1528212, 17211564, 202460400, 2474708496, 31310415376, 408815254832, 5495451727376, 75907303147652, 1075685334980240, 15618612118252960, 232102241507321384, 3526880759915999016, 54755450619399484512, 867928449982022915984
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
where A(x) = x + A(A(x))^2:
A(A(x)) = x + 2*x^2 + 10*x^3 + 69*x^4 + 568*x^5 + 5250*x^6 + 52792*x^7 +...
A(A(x))^2 = x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
The g.f. satisfies the series:
A(x) = x + A(x)^2 + d/dx A(x)^4/2! + d^2/dx^2 A(x)^6/3! + d^3/dx^3 A(x)^8/4! +...
Logarithmic series:
log(A(x)/x) = A(x)^2/x + [d/dx A(x)^4/x]/2! + [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! +...
Also, A(x) = x*G(A(x)^2/x) where G(x) = x/A(x/G(x)^2) is the g.f. of A212411:
G(x) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 235*x^5 + 1792*x^6 + 15261*x^7 +...
Also, A(x)^2 = x*F(A(x)) where F(x) is the g.f. of A213628:
F(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 616*x^6 + 5072*x^7 + 46013*x^8 +...
-
terms = 22; A[] = 0; Do[A[x] = x + A[A[x]]^2 + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 09 2018 *)
-
{a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^2+x*O(x^n))); polcoeff(A, n))}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(2*m)/x)/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1,21,print1(a(n),", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 2*j)));
a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025
A376176
G.f. A(x) satisfies x = A( x - A(x)^4/x^2 ).
Original entry on oeis.org
1, 1, 6, 55, 622, 8015, 113164, 1711898, 27357970, 457507917, 7952476482, 142972019125, 2648639456048, 50415218306637, 983728646223556, 19641163430509505, 400671660024507294, 8340743906266061866, 176998642509849677206, 3825680705425292568049, 84159282700462688412042
Offset: 1
G.f.: A(x) = x + x^2 + 6*x^3 + 55*x^4 + 622*x^5 + 8015*x^6 + 113164*x^7 + 1711898*x^8 + 27357970*x^9 + 457507917*x^10 + ...
where x = A( x - A(x)^4/x^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 13*x^4 + 122*x^5 + 1390*x^6 + 17934*x^7 + 252847*x^8 + 3814724*x^9 + ...
A(x)^3 = x^3 + 3*x^4 + 21*x^5 + 202*x^6 + 2322*x^7 + 30030*x^8 + 423111*x^9 + 6369930*x^10 + ...
where A(x)^3 = x*A(x)^2 + A(A(x))^4.
A(x)^4 = x^4 + 4*x^5 + 30*x^6 + 296*x^7 + 3437*x^8 + 44600*x^9 + 628454*x^10 + 9446280*x^11 + ...
A(A(x))^4 = x^4 + 8*x^5 + 80*x^6 + 932*x^7 + 12096*x^8 + 170264*x^9 + 2555206*x^10 + 40413484*x^11 + ...
where A(x) = x + A(A(x))^4 / A(x)^2.
A(A(x)) = x + 2*x^2 + 14*x^3 + 141*x^4 + 1712*x^5 + 23392*x^6 + 347444*x^7 + 5498681*x^8 + 91552406*x^9 + ...
A(A(x))^2/A(x) = x + 3*x^2 + 23*x^3 + 242*x^4 + 3017*x^5 + 41965*x^6 + 631381*x^7 + 10089533*x^8 + 169256922*x^9 + ...
-
{a(n) = my(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^4/x^2 +x*O(x^n))); polcoeff(A, n))}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(4*m)/x^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(4*m)/x^(2*m+1))/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 4*j)));
a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025
A384622
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) * A(x*A(x))^5 ).
Original entry on oeis.org
1, 1, 7, 75, 989, 14822, 242833, 4253818, 78573475, 1516124048, 30358711661, 627789264431, 13357722853019, 291611321803145, 6517101781199460, 148833150175812360, 3468184751644757228, 82363850033966966043, 1991430772785525516280, 48980124394583747435367
Offset: 0
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, 5*j)));
Showing 1-4 of 4 results.
Comments