A213651 10-nomial coefficient array: Coefficients of the polynomial (1 + ... + X^9)^n, n=0,1,...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 63, 69, 73, 75, 75, 73, 69, 63, 55, 45, 36, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 282, 348, 415, 480
Offset: 0
Examples
There are 1, 3, 6, 10, ... ways to score a total of 4, 5, 6, 7, ... when throwing three 10-sided dice. The table begins as follows: (row n=0) 1; (row sum = 1, row length = 1) (row n=1) 1,1,1,1,1,1,1,1,1,1; (row sum = 10, row length = 10) (row n=2) 1,2,3,4,5,6,7,8,9,10,9,8,7,6,5,4,3,2,1; (sum = 100, length = 19) (row n=3) 1,3,6,10,15,21,28,36,45,55,63,69,73,75,75,73,...; row sum = 1000; (row n=4) 1,4,10,20,35,56,84,120,165,220,282,348,415,...; row sum = 10^4; etc. Number of integers in (row n=2): k(2)=3, because in the range 0 to 99 there are 3 integers whose digits sum to 2: 2, 11 and 20. - _Miquel Cerda_, Jun 21 2017
Links
- Seiichi Manyama, Rows n = 0..46, flattened
- Miquel Cerda, Graphical construction of the triangle T(n,k) for n = 0..11.
Crossrefs
Programs
-
Maple
#Define the r-nomial coefficients for r = 1, 2, 3, ... rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)): #Display the 10-nomials as a table r := 10: rows := 10: for n from 0 to rows do seq(rnomial(r,n,k), k = 0..(r-1)*n) end do; # Peter Bala, Sep 07 2013
-
PARI
concat(vector(5,k,Vec(sum(j=0,9,x^j)^(k-1))))
Formula
T(n,k) = Sum_{i = 0..floor(k/10)} (-1)^i*binomial(n,i)*binomial(n+k-1-10*i,n-1) for n >= 0 and 0 <= k <= 9*n. - Peter Bala, Sep 07 2013
Comments