A213666 Irregular triangle read by rows: T(n,k) is the number of dominating subsets with k vertices of the graph G(n) obtained by taking n copies of the path P_3 and identifying one of their endpoints (a star with n branches of length 2).
1, 3, 1, 0, 3, 8, 5, 1, 0, 0, 7, 20, 18, 7, 1, 0, 0, 0, 15, 48, 56, 32, 9, 1, 0, 0, 0, 0, 31, 112, 160, 120, 50, 11, 1, 0, 0, 0, 0, 0, 63, 256, 432, 400, 220, 72, 13, 1, 0, 0, 0, 0, 0, 0, 127, 576, 1120, 1232, 840, 364, 98, 15, 1
Offset: 1
Examples
Row 2 is 0,3,8,5,1 because G(2) is the path P_5 abcde; no domination subset of size 1, three of size 2 (ad, bd, be), all subsets of size 3 with the exception of abc and cde are dominating (binomial(5,3)-2=8), all binomial(5,4)=5 subsets of size 4 are dominating, and abcde is dominating. Triangle starts: 1, 3, 1; 0, 3, 8, 5, 1; 0, 0, 7, 20, 18, 7, 1; 0, 0, 0, 15, 48, 56, 32, 9, 1;
Links
- S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
- É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
- T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926 [math.CO], 2012.
- Eric Weisstein's World of Mathematics, Domination Polynomial.
- Eric Weisstein's World of Mathematics, Helm Graph.
Programs
-
Maple
T := proc (n, k) if k = n then 2^n-1 else 2^(2*n-k)*(2*binomial(n, k-n-1) + binomial(n, k-n)) end if end proc: for n to 10 do seq(T(n, k), k = 1 .. 2*n+1) end d; # yields sequence in triangular form
-
Mathematica
T[n_, n_] := 2^n - 1; T[n_, k_] := 2^(2*n - k)*(2*Binomial[n, k - n - 1] + Binomial[n, k - n]); Table[T[n, k], {n, 1, 10}, {k, 1, 2*n + 1}] // Flatten (* Jean-François Alcover, Dec 02 2017 *)
Formula
T(n,k) = 2^(2*n-k)*(2*binomial(n,k-n-1)+binomial(n,k-n)) if k > n; T(n,n)=2^n - 1.
The generating polynomial of row n is g[n] = g[n,x] = (1+x)(x*(2+x))^n - x^n (= domination polynomial of the graph G(n)).
Bivariate g.f.: G(x,z) = x*z*(1+x)*(2+x)/(1-2*x*z-x^2*z)-x*z/(1-xz).
Comments