cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213742 Triangle of numbers C^(3)(n,k) of combinations with repetitions from n different elements over k for each of them not more than three appearances allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 31, 1, 5, 15, 35, 65, 101, 1, 6, 21, 56, 120, 216, 336, 1, 7, 28, 84, 203, 413, 728, 1128, 1, 8, 36, 120, 322, 728, 1428, 2472, 3823, 1, 9, 45, 165, 486, 1206, 2598, 4950, 8451, 13051, 1, 10
Offset: 0

Views

Author

Keywords

Comments

The left side of triangle consists of 1's, while the right side is formed by A005725. Further, T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A005718(n) for n>=2, T(n,5)=A005719(n) for n>=5, T(n,6)=A005720(n) for n>=6, T(n,7)=A001919(n) for n>=7, T(n,8)=A064055(n) for n>=5.

Examples

			Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1.....2.....3
.3..|..1.....3.....6....10
.4..|..1.....4....10....20....31
.5..|..1.....5....15....35....65....101
.6..|..1.....6....21....56...120....216...336
.7..|..1.....7....28....84...203....413...728....1128
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[4] (* Peter J. C. Moses, Apr 16 2013 *)

Formula

C^(3)(n,k)=sum{r=0,...,floor(k/4)}(-1)^r*C(n,r)*C(n-4*r+k-1, n-1)