A213742 Triangle of numbers C^(3)(n,k) of combinations with repetitions from n different elements over k for each of them not more than three appearances allowed.
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 31, 1, 5, 15, 35, 65, 101, 1, 6, 21, 56, 120, 216, 336, 1, 7, 28, 84, 203, 413, 728, 1128, 1, 8, 36, 120, 322, 728, 1428, 2472, 3823, 1, 9, 45, 165, 486, 1206, 2598, 4950, 8451, 13051, 1, 10
Offset: 0
Examples
Triangle begins n/k.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1.....2.....3 .3..|..1.....3.....6....10 .4..|..1.....4....10....20....31 .5..|..1.....5....15....35....65....101 .6..|..1.....6....21....56...120....216...336 .7..|..1.....7....28....84...203....413...728....1128
Links
- Peter J. C. Moses, Rows n = 0..50 of triangle, flattened
Crossrefs
Programs
-
Mathematica
Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[4] (* Peter J. C. Moses, Apr 16 2013 *)
Formula
C^(3)(n,k)=sum{r=0,...,floor(k/4)}(-1)^r*C(n,r)*C(n-4*r+k-1, n-1)
Comments