A111808 Left half of trinomial triangle (A027907), triangle read by rows.
1, 1, 1, 1, 2, 3, 1, 3, 6, 7, 1, 4, 10, 16, 19, 1, 5, 15, 30, 45, 51, 1, 6, 21, 50, 90, 126, 141, 1, 7, 28, 77, 161, 266, 357, 393, 1, 8, 36, 112, 266, 504, 784, 1016, 1107, 1, 9, 45, 156, 414, 882, 1554, 2304, 2907, 3139, 1, 10, 55, 210, 615, 1452, 2850, 4740, 6765, 8350
Offset: 1
References
- Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Eric Weisstein's World of Mathematics, Trinomial Triangle
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
Crossrefs
T(n, 0) = 0;
T(n, 1) = n for n>1;
T(n, 2) = A000217(n) for n>1;
T(n, 3) = A005581(n) for n>2;
T(n, 4) = A005712(n) for n>3;
T(n, 5) = A000574(n) for n>4;
T(n, 6) = A005714(n) for n>5;
T(n, 7) = A005715(n) for n>6;
T(n, 8) = A005716(n) for n>7;
T(n, 9) = A064054(n-5) for n>8;
T(n, n-5) = A098470(n) for n>4;
T(n, n-4) = A014533(n-3) for n>3;
T(n, n-3) = A014532(n-2) for n>2;
T(n, n-2) = A014531(n-1) for n>1;
T(n, n-1) = A005717(n) for n>0;
Programs
-
Maple
T := (n,k) -> simplify(GegenbauerC(k, -n, -1/2)): for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 09 2016
-
Mathematica
Table[GegenbauerC[k, -n, -1/2], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)
Formula
(1 + x + x^2)^n = Sum(T(n,k)*x^k: 0<=k<=n) + Sum(T(n,k)*x^(2*n-k): 0<=k
T(n, k) = A027907(n, k) = Sum_{i=0,..,(k/2)} binomial(n, n-k+2*i) * binomial(n-k+2*i, i), 0<=k<=n.
T(n, k) = GegenbauerC(k, -n, -1/2). - Peter Luschny, May 09 2016
Extensions
Corrected and edited by Johannes W. Meijer, Oct 05 2010
A071675 Array read by antidiagonals of trinomial coefficients.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 3, 3, 1, 0, 0, 2, 6, 4, 1, 0, 0, 1, 7, 10, 5, 1, 0, 0, 0, 6, 16, 15, 6, 1, 0, 0, 0, 3, 19, 30, 21, 7, 1, 0, 0, 0, 1, 16, 45, 50, 28, 8, 1, 0, 0, 0, 0, 10, 51, 90, 77, 36, 9, 1, 0, 0, 0, 0, 4, 45, 126, 161, 112, 45, 10, 1, 0, 0, 0, 0, 1, 30, 141, 266, 266
Offset: 0
Comments
Read as a number triangle, this is the Riordan array (1, x(1+x+x^2)) with T(n,k) = Sum_{i=0..floor((n+k)/2)} C(k,2i+2k-n)*C(2i+2k-n,i). Rows start {1}, {0,1}, {0,1,1}, {0,1,2,1}, {0,0,3,3,1},... Row sums are then the trinomial numbers A000073(n+2). Diagonal sums are A013979. - Paul Barry, Feb 15 2005
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th antidiagonal of the array. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213742. For example, s_1(n)=binomial(n,1)=n is the first column of A213742 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213742 for n>1, etc. In particular (see comment in A213742) in cases k=4,5,6,7,8, s_k(n) is A005718(n+2), A005719(n), A005720(n), A001919(n), A064055(n+3), respectively. - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
Examples
Rows start 1, 0, 0, 0, 0, 0, ...; 1, 1, 1, 0, 0, 0, 0, ...; 1, 2, 3, 2, 1, 0, 0, ...; 1, 3, 6, 7, 6, 3, 1, 0, ...; 1, 4, 10, 16, 19, 16, 10, 4, 1, ...; etc.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[Binomial[n - k - j, j]*Binomial[k, n - k - j], {j, 0, Floor[(n - k)/2]}]; Table[T[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)
Formula
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) starting with T(0, 0)=1. See A027907 for more.
As a number triangle, T(n, k) = Sum_{i=0..floor((n-k)/2)} C(n-k-i, i) * C(k, n-k-i). - Paul Barry, Apr 26 2005
A213743 Triangle T(n,k), read by rows, of numbers T(n,k)=C^(4)(n,k) of combinations with repetitions from n different elements over k for each of them not more than four appearances allowed.
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 121, 1, 6, 21, 56, 126, 246, 426, 1, 7, 28, 84, 210, 455, 875, 1520, 1, 8, 36, 120, 330, 784, 1652, 3144, 5475, 1, 9, 45, 165, 495, 1278, 2922, 6030, 11385, 19855, 1, 10, 55, 220, 715, 1992, 4905, 10890, 22110, 41470, 72403
Offset: 0
Comments
The left side of triangle consists of 1's, while the right side is formed by A187925. Further, T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A000332(n) for n>=7, T(n,5)=A027659(n) for n>=3, T(n,6)=A064056(n) for n>=4, T(n,7)=A064057(n) for n>=5, T(n,8)=A064058(n) for n>=6, T(n,9)=A000575(n) for n>=6.
Examples
Triangle begins n/k.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1.....2.....3 .3..|..1.....3.....6....10 .4..|..1.....4....10....20....35 .5..|..1.....5....15....35....70....121 .6..|..1.....6....21....56...126....246...426 .7..|..1.....7....28....84...210....455...875....1520 T(4,2)=C^(4)(4,2): From 4 elements {1,2,3,4}, we have the following 10 allowed combinations of 2 elements: {1,1}, {1,2}, {1,3}, {1,4}, {2,2}, {2,3}, {2,4}, {3,3}, {3,4}, {4,4}.
Links
- Peter J. C. Moses, Rows n = 0..50 of triangle, flattened
Crossrefs
Programs
-
Mathematica
Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[5] (* Peter J. C. Moses, Apr 16 2013 *)
Formula
C^(4)(n,k) = Sum_{r=0...floor(k/5)} (-1)^r*C(n,r)*C(n-5*r+k-1, n-1).
A213744 Triangle of numbers C^(5)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 5 appearances allowed.
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 456, 1, 7, 28, 84, 210, 462, 917, 1667, 1, 8, 36, 120, 330, 792, 1708, 3368, 6147, 1, 9, 45, 165, 495, 1287, 2994, 6354, 12465, 22825, 1, 10
Offset: 0
Comments
For k<=4, the triangle coincides with triangle A213743.
Examples
Triangle begins n/k.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1.....2.....3 .3..|..1.....3.....6....10 .4..|..1.....4....10....20....35 .5..|..1.....5....15....35....70....126 .6..|..1.....6....21....56...126....252...456 .7..|..1.....7....28....84...210....462...917....1667
Links
- Peter J. C. Moses, Rows n = 0..50 of triangle, flattened
Crossrefs
Programs
-
Mathematica
Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[6] (* Peter J. C. Moses, Apr 16 2013 *)
Formula
C^(5)(n,k)=sum{r=0,...,floor(k/6)}(-1)^r*C(n,r)*C(n-6*r+k-1, n-1)
A213745 Triangle of numbers C^(6)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 6 appearances allowed.
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1709, 1, 8, 36, 120, 330, 792, 1716, 3424, 6371, 1, 9, 45, 165, 495, 1287, 3003, 6426, 12789, 23905, 1, 10
Offset: 0
Comments
For k<=5, the triangle coincides with triangle A213744.
Examples
Triangle begins n/k.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1.....2.....3 .3..|..1.....3.....6....10 .4..|..1.....4....10....20....35 .5..|..1.....5....15....35....70....126 .6..|..1.....6....21....56...126....252...462 .7..|..1.....7....28....84...210....462...924....1709
Links
- Peter J. C. Moses, Rows n = 0..50 of triangle, flattened
Crossrefs
Programs
-
Mathematica
Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[7] (* Peter J. C. Moses, Apr 16 2013 *)
Formula
C^(6)(n,k)=sum{r=0,...,floor(k/7)}(-1)^r*C(n,r)*C(n-7*r+k-1, n-1).
A generalization. The numbers C^(t)(n,k) of combinations with repetitions from n different elements over k, for each of them not more than t>=1 appearances allowed, are enumerated by the formula:
C^(t)(n,k)=sum{r=0,...,floor(k/(t+1))}(-1)^r*C(n,r)*C(n-(t+1)*r+k-1, n-1).
In case t=1, it is binomial coefficient C^(t)(n,k)=C(n,k), and we have the combinatorial identity: sum{r=0,...,floor(k/2)}(-1)^r*C(n,r)*C(n-2*r+k-1, n-1)=C(n,k). On the other hand, if t=n, then r=0, and for the corresponding numbers of combinations with repetitions without a restriction on appearances of elements we obtain a well known formula C(n+k-1, n-1) (cf. triangle A059481).
In addition, note that, if k<=t, then C^(t)(n,k)=C(n+k-1, n-1). Therefore, triangle {C^(t+1)(n,k)} coincides with the previous triangle {C^(t)(n,k)} for k<=t.
A213808 Triangle of numbers C^(7)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 7 appearances allowed.
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1716, 1, 8, 36, 120, 330, 792, 1716, 3432, 6427, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12861, 24229, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24300, 48520, 91828
Offset: 0
Comments
For k <= 6, the triangle coincides with triangle A213745.
Examples
Triangle begins n/k | 0 1 2 3 4 5 6 7 8 ----+--------------------------------------------------- 0 | 1 1 | 1 1 2 | 1 2 3 3 | 1 3 6 10 4 | 1 4 10 20 35 5 | 1 5 15 35 70 126 6 | 1 6 21 56 126 252 462 7 | 1 7 28 84 210 462 924 1716 8 | 1 8 36 120 330 792 1716 3432 6427
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
Table[Sum[(-1)^r*Binomial[n, r]*Binomial[n - 8*r + k - 1, n - 1], {r, 0, Floor[k/8]}], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 25 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, sum(r=0, floor(k/8), (-1)^r*binomial(n,r)*binomial(n-8*r + k-1,n-1))), ", "))) \\ G. C. Greubel, Nov 25 2017
Comments