A049017 Expansion of 1/((1-x)^7 - x^7).
1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975, 9714753412, 19818498700, 40199107690
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,2).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023 -
Mathematica
CoefficientList[Series[1/((1-x)^7-x^7),{x,0,30}],x] (* Harvey P. Dale, Feb 18 2011 *)
-
PARI
Vec(1/((1-x)^7-x^7)+O(x^99)) \\ M. F. Hasler, Mar 05 2017
-
SageMath
def A049017_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/((1-x)^7 - x^7) ).list() A049017_list(40) # G. C. Greubel, Apr 11 2023
Formula
G.f.: 1/((1-x)^7 - x^7) = 1/((1-2*x)*(1-5*x+11*x^2-13*x^3+9*x^4-3*x^5+x^6)).
Comments