A213889 Triangle of coefficients of representations of columns of A213745 in binomial basis.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 0, 6, 15, 20, 15, 6, 1, 0, 0, 5, 21, 35, 35, 21, 7, 1, 0, 0, 4, 25, 56, 70, 56, 28, 8, 1, 0, 0, 3, 27, 80, 126, 126, 84, 36, 9, 1
Offset: 0
Examples
As a triangle, this begins n/k.|..0....1....2....3....4....5....6....7....8....9 ===================================================== .0..|..1 .1..|..0....1 .2..|..0....1....1 .3..|..0....1....2....1 .4..|..0....1....3....3....1 .5..|..0....1....4....6....4....1 .6..|..0....1....5...10...10....5....1 .7..|..0....0....6...15...20...15....6....1 .8..|..0....0....5...21...35...35...21....7....1 .9..|..0....0....4...25...56...70...56...28....8....1
Crossrefs
Programs
-
Maple
pts := 6; # A213889 and A061676 g := 1/(1-t*z*add(z^i,i=0..pts-1)) ; for n from 0 to 13 do for k from 0 to n do coeftayl(g,z=0,n) ; coeftayl(%,t=0,k) ; printf("%d ",%) ; end do: printf("\n") ; end do: # R. J. Mathar, May 28 2025
Comments