A213744 Triangle of numbers C^(5)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 5 appearances allowed.
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 456, 1, 7, 28, 84, 210, 462, 917, 1667, 1, 8, 36, 120, 330, 792, 1708, 3368, 6147, 1, 9, 45, 165, 495, 1287, 2994, 6354, 12465, 22825, 1, 10
Offset: 0
Examples
Triangle begins n/k.|..0.....1.....2.....3.....4.....5.....6.....7 ================================================== .0..|..1 .1..|..1.....1 .2..|..1.....2.....3 .3..|..1.....3.....6....10 .4..|..1.....4....10....20....35 .5..|..1.....5....15....35....70....126 .6..|..1.....6....21....56...126....252...456 .7..|..1.....7....28....84...210....462...917....1667
Links
- Peter J. C. Moses, Rows n = 0..50 of triangle, flattened
Crossrefs
Programs
-
Mathematica
Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[6] (* Peter J. C. Moses, Apr 16 2013 *)
Formula
C^(5)(n,k)=sum{r=0,...,floor(k/6)}(-1)^r*C(n,r)*C(n-6*r+k-1, n-1)
Comments