cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213747 Rectangular array: (row n) = b**c, where b(h) = -1 + 2^h, c(h) = b(n-1+h), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 6, 3, 23, 16, 7, 72, 57, 36, 15, 201, 170, 125, 76, 31, 522, 459, 366, 261, 156, 63, 1291, 1164, 975, 758, 533, 316, 127, 3084, 2829, 2448, 2007, 1542, 1077, 636, 255, 7181, 6670, 5905, 5016, 4071, 3110, 2165, 1276, 511, 16398, 15375, 13842
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2012

Keywords

Comments

Principal diagonal: A213748.
Antidiagonal sums: A213749.
Row 1, (1,3,7,15,31,...)**(1,3,7,15,31,...): A045618.
Row 2, (1,3,7,15,31,...)**(3,7,15,31,...).
Row 3, (1,3,7,15,31,...)**(7,15,31,...).
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....6.....23....72.....201
3....16....57....170....459
7....36....125...366....975
15...76....261...758....1007
31...156...533...1542...4071
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := -1 + 2^n; c[n_] := -1 + 2^n;
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213747 *)
    Table[t[n, n], {n, 1, 40}] (* A213748 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213749 *)

Formula

T(n,k) = 6*T(n,k-1)-13*T(n,k-2)+12*T(n,k-3)-4*T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = -1 + 2^n - (-2 - 2^n)*x and g(x) = (1 - 3*x + 2*x^2 )^2.