cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213759 Principal diagonal of the convolution array A213783.

Original entry on oeis.org

1, 4, 11, 22, 39, 62, 93, 132, 181, 240, 311, 394, 491, 602, 729, 872, 1033, 1212, 1411, 1630, 1871, 2134, 2421, 2732, 3069, 3432, 3823, 4242, 4691, 5170, 5681, 6224, 6801, 7412, 8059, 8742, 9463, 10222, 11021, 11860, 12741, 13664, 14631
Offset: 1

Views

Author

Clark Kimberling, Jun 22 2012

Keywords

Crossrefs

Partial sums of A047838. - Guenther Schrack, May 24 2018

Programs

  • Mathematica
    b[n_] := Floor[(n + 2)/2]; c[n_] := Floor[(n + 1)/2];
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213783 *)
    Table[t[n, n], {n, 1, 40}] (* A213759 *)
    LinearRecurrence[{3,-2,-2,3,-1},{1,4,11,22,39},50] (* Harvey P. Dale, Jul 22 2014 *)

Formula

a(n) = (3 - 3*(-1)^n - 4*n + 18*n^2 + 4*n^3)/24.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
G.f.: x*(1 + x + x^2 - x^3)/((1 - x)^4 *(1 + x)).
a(n+1) = a(n) + A047838(n+2) for n > 0. - Guenther Schrack, May 24 2018
a(n) = A212964(n+2) - n for n > 0. - Guenther Schrack, May 30 2018