A213771 Rectangular array: (row n) = b**c, where b(h) = 3*h-2, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.
1, 6, 2, 18, 11, 3, 40, 30, 16, 4, 75, 62, 42, 21, 5, 126, 110, 84, 54, 26, 6, 196, 177, 145, 106, 66, 31, 7, 288, 266, 228, 180, 128, 78, 36, 8, 405, 380, 336, 279, 215, 150, 90, 41, 9, 550, 522, 472, 406, 330, 250, 172, 102, 46
Offset: 1
Examples
Northwest corner (the array is read by falling antidiagonals): 1....6....18...40....75....126 2....11...30...62....110...177 3....16...42...84....145...228 4....21...54...106...180...279 5....26...66...128...215...330
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
Crossrefs
Cf. A212500
Programs
-
Mathematica
b[n_]:=3n-2;c[n_]:=n; t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] r[n_]:=Table[t[n,k],{k,1,60}] (* A213771 *) Table[t[n,n],{n,1,40}] (* A213772 *) s[n_]:=Sum[t[i,n+1-i],{i,1,n}] Table[s[n],{n,1,50}] (* A132117 *)
Formula
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(n + (n+1)*x - (n+2)*x^2) and g(x) = (1 - x)^4.
Comments