A213772
Principal diagonal of the convolution array A213771.
Original entry on oeis.org
1, 11, 42, 106, 215, 381, 616, 932, 1341, 1855, 2486, 3246, 4147, 5201, 6420, 7816, 9401, 11187, 13186, 15410, 17871, 20581, 23552, 26796, 30325, 34151, 38286, 42742, 47531, 52665, 58156, 64016, 70257, 76891, 83930, 91386, 99271, 107597, 116376, 125620, 135341
Offset: 1
- Zhu Shijie, Jade Mirror of the Four Unknowns (Siyuan yujian), Book III Guo Duo Die Gang (Piles of Fruit), Problem number 7, (1303).
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Zhu Shijie, Jade Mirror of the Four Unknowns 2, Translation by Library of Chinese classics, original from 1303.
- Wikipedia, Jade Mirror of the Four Unknowns.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
(See A213771.)
LinearRecurrence[{4,-6,4,-1},{1,11,42,106},70] (* Harvey P. Dale, Mar 29 2025 *)
-
a(n) = (4*n^3-3*n^2+n)/2; \\ Altug Alkan, Dec 16 2017
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A132117
Binomial transform of [1, 7, 17, 17, 6, 0, 0, 0, ...].
Original entry on oeis.org
1, 8, 32, 90, 205, 406, 728, 1212, 1905, 2860, 4136, 5798, 7917, 10570, 13840, 17816, 22593, 28272, 34960, 42770, 51821, 62238, 74152, 87700, 103025, 120276, 139608, 161182, 185165, 211730, 241056, 273328, 308737, 347480, 389760, 435786, 485773, 539942, 598520
Offset: 1
a(3) = 32 = (1, 2, 1) dot (1, 7, 17) = (1 + 14 + 17).
a(5) = 15^2 - (10+6+3+1) = A000537(5) - A000292(4) = 225 - 20 = 205. - _Bruno Berselli_, May 01 2010
-
a:= n-> (Matrix([[0,0,2,13,46]]). Matrix(5, (i,j)-> if (i=j-1) then 1 elif j=1 then [5,-10,10,-5,1][i] else 0 fi)^n)[1,1]: seq(a(n), n=1..29); # Alois P. Heinz, Aug 07 2008
a:= n-> (4+(6+(8+6*n)*n)*n)*n/24: seq(a(n),n=1..40); # Alois P. Heinz, Aug 07 2008
-
Table[(4 n + 6 n^2 + 8 n^3 + 6 n^4) / 24, {n, 50}] (* Vincenzo Librandi, Jun 21 2013 *)
-
a(n) = (4*n+6*n^2+8*n^3+6*n^4)/24 \\ Charles R Greathouse IV, Sep 03 2011
A162260
a(n) = (n^3 + 4*n^2 - n)/2.
Original entry on oeis.org
2, 11, 30, 62, 110, 177, 266, 380, 522, 695, 902, 1146, 1430, 1757, 2130, 2552, 3026, 3555, 4142, 4790, 5502, 6281, 7130, 8052, 9050, 10127, 11286, 12530, 13862, 15285, 16802, 18416, 20130, 21947, 23870, 25902, 28046, 30305, 32682, 35180, 37802
Offset: 1
-
CoefficientList[Series[(2+3*x-2*x^2)/(1-x)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {2, 11, 30, 62}, 50] (* Vincenzo Librandi, Mar 05 2012 *)
Table[(n^3+4 n^2-n)/2,{n,50}] (* Harvey P. Dale, Jul 05 2020 *)
Showing 1-4 of 4 results.
Comments