cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A213772 Principal diagonal of the convolution array A213771.

Original entry on oeis.org

1, 11, 42, 106, 215, 381, 616, 932, 1341, 1855, 2486, 3246, 4147, 5201, 6420, 7816, 9401, 11187, 13186, 15410, 17871, 20581, 23552, 26796, 30325, 34151, 38286, 42742, 47531, 52665, 58156, 64016, 70257, 76891, 83930, 91386, 99271, 107597, 116376, 125620, 135341
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Comments

Zhu Shijie gives in his Magnus Opus "Jade Mirror of the Four Unknowns" the problem: "The total number of apples in a pile in the form of a cone is 932, and the number of layers is an odd number." Zhu Shijie assumed the rational sequence s(k) = (k*(k+1)*(2*k+1)+k+1)/8 for the total number of apples in k layers, with n = (k+1)/2 is the solution 932 = a((15+1)/2) with k = 15. Zhu Shijie gave the solution polynomial: "Let the element tian be the number of layers. From the statement we have 7455 for the negative shi, 2 for the positive fang, 3 for the positive first lian, and 2 for the positive yu." This translates into the polynomial equation: 2*x^3 + 3*x^2 + 2*x - 7455 = 0. - Thomas Scheuerle, Feb 10 2025

References

  • Zhu Shijie, Jade Mirror of the Four Unknowns (Siyuan yujian), Book III Guo Duo Die Gang (Piles of Fruit), Problem number 7, (1303).

Crossrefs

Cf. A000326, A002411, A085473, A213771, A220084 (for a list of numbers of the form n*P(k,n) - (n-1)*P(k,n-1), where P(k,n) is the n-th k-gonal pyramidal number).
Cf. A260260 (comment). [Bruno Berselli, Jul 22 2015]

Programs

  • Mathematica
    (See A213771.)
    LinearRecurrence[{4,-6,4,-1},{1,11,42,106},70] (* Harvey P. Dale, Mar 29 2025 *)
  • PARI
    a(n) = (4*n^3-3*n^2+n)/2; \\ Altug Alkan, Dec 16 2017

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(1 + 7*x + 4*x^2)/(1 - x)^4.
a(n) = (4*n^2 - 3*n + 1)*n/2 = n*A002411(n) - (n-1)*A002411(n-1). - Bruno Berselli, Dec 11 2012
a(n) = n*A000326(n) + Sum_{i=0..n-1} A000326(i). - Bruno Berselli, Dec 18 2013
a(n) - a(n-1) = A085473(n-1). - R. J. Mathar, Mar 02 2025
E.g.f.: exp(x)*x*(1 + 4*x)*(2 + x)/2. - Elmo R. Oliveira, Aug 08 2025

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A132117 Binomial transform of [1, 7, 17, 17, 6, 0, 0, 0, ...].

Original entry on oeis.org

1, 8, 32, 90, 205, 406, 728, 1212, 1905, 2860, 4136, 5798, 7917, 10570, 13840, 17816, 22593, 28272, 34960, 42770, 51821, 62238, 74152, 87700, 103025, 120276, 139608, 161182, 185165, 211730, 241056, 273328, 308737, 347480, 389760, 435786, 485773, 539942, 598520
Offset: 1

Views

Author

Gary W. Adamson, Aug 10 2007

Keywords

Comments

Equals row sums of triangle A178067. - Gary W. Adamson, May 18 2010
Antidiagonal sums of the convolution array A213771. - Clark Kimberling, Jul 04 2012
Partial sums of A081436. - J. M. Bergot, Jun 20 2013

Examples

			a(3) = 32 = (1, 2, 1) dot (1, 7, 17) = (1 + 14 + 17).
a(5) = 15^2 - (10+6+3+1) = A000537(5) - A000292(4) = 225 - 20 = 205. - _Bruno Berselli_, May 01 2010
		

Crossrefs

Cf. A178067. - Gary W. Adamson, May 18 2010

Programs

  • Maple
    a:= n-> (Matrix([[0,0,2,13,46]]). Matrix(5, (i,j)-> if (i=j-1) then 1 elif j=1 then [5,-10,10,-5,1][i] else 0 fi)^n)[1,1]: seq(a(n), n=1..29); # Alois P. Heinz, Aug 07 2008
    a:= n-> (4+(6+(8+6*n)*n)*n)*n/24: seq(a(n),n=1..40); # Alois P. Heinz, Aug 07 2008
  • Mathematica
    Table[(4 n + 6 n^2 + 8 n^3 + 6 n^4) / 24, {n, 50}] (* Vincenzo Librandi, Jun 21 2013 *)
  • PARI
    a(n) = (4*n+6*n^2+8*n^3+6*n^4)/24 \\ Charles R Greathouse IV, Sep 03 2011

Formula

Let M = the infinite lower triangular matrix of the natural numbers: [1; 2,3; 4,5,6; ...]; and V = [1, 2, 3, ...]. Then M*V = A132117.
O.g.f.: -x(1+x)(2x+1)/(-1+x)^5. - R. J. Mathar, Apr 02 2008
a(n) = (4*n + 6*n^2 + 8*n^3 + 6*n^4)/24. - Alois P. Heinz, Aug 07 2008
a(n) = A000217(n)^2 - Sum_{i=1..n-1} A000217(i) = n*(n+1)*(3*n^2+n+2)/12. - Bruno Berselli, May 01 2010

Extensions

More terms from R. J. Mathar, Apr 02 2008

A162260 a(n) = (n^3 + 4*n^2 - n)/2.

Original entry on oeis.org

2, 11, 30, 62, 110, 177, 266, 380, 522, 695, 902, 1146, 1430, 1757, 2130, 2552, 3026, 3555, 4142, 4790, 5502, 6281, 7130, 8052, 9050, 10127, 11286, 12530, 13862, 15285, 16802, 18416, 20130, 21947, 23870, 25902, 28046, 30305, 32682, 35180, 37802
Offset: 1

Views

Author

Vincenzo Librandi, Jun 29 2009

Keywords

Comments

Row 2 of the convolution array A213771. - Clark Kimberling, Jul 04 2012

Crossrefs

Cf. A154614.

Programs

  • Mathematica
    CoefficientList[Series[(2+3*x-2*x^2)/(1-x)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {2, 11, 30, 62}, 50] (* Vincenzo Librandi, Mar 05 2012 *)
    Table[(n^3+4 n^2-n)/2,{n,50}] (* Harvey P. Dale, Jul 05 2020 *)

Formula

Row sums from A154614: a(n) = Sum_{m=1..n} (m*n + m + n - 1).
From Vincenzo Librandi, Mar 05 2012: (Start)
G.f.: x*(2 + 3*x - 2*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

Extensions

New name from Vincenzo Librandi, Mar 05 2012
Showing 1-4 of 4 results.