cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213787 a(n) = Sum_{1<=i

Original entry on oeis.org

0, 0, 0, 2, 17, 102, 518, 2442, 11010, 48444, 209979, 902132, 3854708, 16416204, 69769244, 296148174, 1256077725, 5324954250, 22567665834, 95626443110, 405154147310, 1716454353240, 7271524823255, 30804002164872, 130491325800072, 552779233930872, 2341634254967448, 9919384305913082, 42019349641680905
Offset: 0

Views

Author

N. J. A. Sloane, Jun 20 2012

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(9, (i, j)-> `if`(i=j-1, 1, `if`(i=9,
             [1, 2, -14, -11, 40, 16, -29, -2, 6][j], 0)))^(n+3).
             <<0, -1, 0, 0, 0, 0, 2, 17, 102>>)[1, 1]:
    seq (a(n), n=0..30);  # Alois P. Heinz, Jun 20 2012
  • Mathematica
    LinearRecurrence[{6, -2, -29, 16, 40, -11, -14, 2, 1}, {0, 0, 0, 2, 17, 102, 518, 2442, 11010}, 30] (* Jean-François Alcover, Feb 13 2016 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec((x^4+2*x^3-4*x^2-5*x-2)*x^3 / ((x+1) * (x^2-x-1) * (x^2+4*x-1) * (x^2-3*x+1) * (x^2+x-1)))) \\ G. C. Greubel, Mar 05 2017

Formula

G.f.: (x^4+2*x^3-4*x^2-5*x-2)*x^3 / ((x+1) * (x^2-x-1) * (x^2+4*x-1) * (x^2-3*x+1) * (x^2+x-1)). - Alois P. Heinz, Jun 20 2012