A213826 Principal diagonal of the convolution array A213825.
2, 34, 132, 332, 670, 1182, 1904, 2872, 4122, 5690, 7612, 9924, 12662, 15862, 19560, 23792, 28594, 34002, 40052, 46780, 54222, 62414, 71392, 81192, 91850, 103402, 115884, 129332, 143782, 159270, 175832, 193504, 212322, 232322, 253540, 276012, 299774
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A213825.
Programs
-
Magma
[6*n^3-3*n^2-n: n in [1..40]]; // Vincenzo Librandi, Nov 23 2018
-
Mathematica
(See A213825.) CoefficientList[Series[2 (1 + 13 x + 4 x^2) / (1 - x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Nov 23 2018 *)
Formula
a(n) = -n - 3*n^2 + 6*n*3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: f(x)/g(x), where f(x) = 2*x*(1 + 13*x + 4*x^2) and g(x) = (1-x)^4.
a(n) = 2*A024215(n).
E.g.f.: (2 + 32*x + 33*x^2 + 6*x^3)*exp(x). - Franck Maminirina Ramaharo, Nov 23 2018