cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213827 a(n) = n^2*(n+1)*(3*n+1)/4.

Original entry on oeis.org

0, 2, 21, 90, 260, 600, 1197, 2156, 3600, 5670, 8525, 12342, 17316, 23660, 31605, 41400, 53312, 67626, 84645, 104690, 128100, 155232, 186461, 222180, 262800, 308750, 360477, 418446, 483140, 555060, 634725, 722672, 819456, 925650, 1041845, 1168650, 1306692
Offset: 0

Views

Author

Clark Kimberling, Jul 04 2012

Keywords

Comments

Antidiagonal sums of the convolution array A213825.

Examples

			a(7) = 1*(7^2+1) + 2*(7^2+2^2) + 3*(7^2+3^2) + 4*(7^2+4^2) + 5*(7^2+5^2) + 6*(7^2+6^2) + 7*(7^2+7^2) = 2156. [_Bruno Berselli_, Aug 25 2014]
		

Crossrefs

Cf. A213825.

Programs

  • Magma
    [(n+1)*(3*n+1)*n^2/4: n in [1..40]]; // Bruno Berselli, Aug 25 2014
    
  • Mathematica
    (See A213825.)
  • Sage
    [(n+1)*(3*n+1)*n^2/4 for n in (1..40)] # Bruno Berselli, Aug 25 2014

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(2 + 11*x + 5*x^2) / (1-x)^5.
a(n) = Sum_{i=1..n} i*(n^2+i^2). - Bruno Berselli, Aug 25 2014
a(n) = (A367177(n) - 3*(n+1))/3. - Scott R. Shannon and N. J. A. Sloane, Nov 09 2023

Extensions

Edited by N. J. A. Sloane, May 14 2020 (changed offset, changed to simpler definition from Bruno Berselli).