A213840 a(n) = n*(1 + n)*(3 - 4*n + 4*n^2)/6.
1, 11, 54, 170, 415, 861, 1596, 2724, 4365, 6655, 9746, 13806, 19019, 25585, 33720, 43656, 55641, 69939, 86830, 106610, 129591, 156101, 186484, 221100, 260325, 304551, 354186, 409654, 471395, 539865, 615536, 698896, 790449, 890715, 1000230, 1119546, 1249231
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..200
- Teofil Bogdan and Mircea Rus, Numărând dreptunghiuri pe foaia de matematică (in Romanian). Gazeta Matematică, seria B, 2020 (6-7-8), pp. 281-288.
- Teofil Bogdan and Mircea Dan Rus, Counting the lattice rectangles inside Aztec diamonds and square biscuits, arXiv:2007.13472 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
First differences of A271870. - J. M. Bergot, Aug 29 2016
Programs
-
Magma
[n*(1+n)*(3-4*n+4*n^2)/6: n in [1..60]]; // Vincenzo Librandi, Aug 01 2015
-
Maple
A213840:=n->n*(1 + n)*(3 - 4*n + 4*n^2)/6: seq(A213840(n), n=1..50); # Wesley Ivan Hurt, Sep 16 2017
-
Mathematica
Table[n (1 + n) (3 - 4 n + 4 n^2)/6, {n, 50}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 11, 54, 170, 415}, 40] (* Vincenzo Librandi, Aug 01 2015 *)
Formula
Extensions
Edited (with simpler definition) by N. J. A. Sloane, Sep 19 2017
Comments