cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213910 Irregular triangle read by rows: T(n,k) is the number of involutions of length n that have exactly k inversions; n>=0, 0<=k<=binomial(n,2).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 0, 1, 1, 3, 1, 2, 1, 1, 1, 1, 4, 3, 3, 4, 2, 4, 1, 3, 0, 1, 1, 5, 6, 5, 9, 5, 10, 5, 9, 4, 7, 3, 3, 2, 1, 1, 1, 6, 10, 9, 16, 13, 19, 17, 19, 19, 17, 19, 13, 17, 7, 13, 3, 8, 1, 4, 0, 1, 1, 7, 15, 16, 26, 29, 34, 43, 39, 54, 41, 61, 40, 62, 36, 58, 28, 47, 21, 34, 15, 21, 10, 11, 6, 4, 3, 1, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 04 2013

Keywords

Examples

			T(4,3) = 2 because we have: (3,2,1,4), (1,4,3,2).
Triangle T(n,k) begins:
  1;
  1;
  1, 1;
  1, 2, 0, 1;
  1, 3, 1, 2, 1, 1,  1;
  1, 4, 3, 3, 4, 2,  4, 1, 3, 0, 1;
  1, 5, 6, 5, 9, 5, 10, 5, 9, 4, 7, 3, 3, 2, 1, 1;
  ...
		

Crossrefs

Cf. A008302 (permutations of [n] with k inversions).
Cf. A000085 (row sums), A211606, A214086 (diagonal).

Programs

  • Maple
    T:= proc(n) option remember; local f, g, j; if n<2 then 1 else
          f, g:= [T(n-1)], [T(n-2)]; for j to 2*n-3 by 2 do
          f:= zip((x, y)->x+y, f, [0$j, g[]], 0) od; f[] fi
        end:
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 05 2013
  • Mathematica
    Needs["Combinatorica`"];
    Table[Distribution[Map[Inversions,Involutions[n]],Range[0,Binomial[n,2]]],{n,0,9}]//Flatten
    (* Second program: *)
    zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]];
    T[n_] := T[n] = Module[{f, g, j}, If[n < 2, Return@{1}, f = T[n-1]; g = T[n-2]; For[j = 1, j <= 2*n - 3, j += 2, f = zip[Plus, f, Join[Table[0, {j}], g], 0]]]; f];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 04 2023, after Alois P. Heinz *)

Formula

Sum_{k>=0} T(n,k)*k = A211606(n).
T(n,k) = T(n-1,k) + Sum_{j=1..n-1} T(n-2,k-2*(n-j)+1) for n>=0, k>0; T(n,k) = 0 for n<0 or k<0; T(n,0) = 1 for n>=0. - Alois P. Heinz, Mar 07 2013