cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213920 Number of rooted trees with n nodes such that no more than two subtrees corresponding to children of any node have the same number of nodes.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 15, 34, 79, 190, 457, 1132, 2823, 7126, 18136, 46541, 120103, 312109, 815012, 2137755, 5632399, 14895684, 39519502, 105198371, 280815067, 751490363, 2016142768, 5420945437, 14604580683, 39425557103, 106618273626, 288792927325, 783516425820
Offset: 0

Views

Author

Alois P. Heinz, Mar 05 2013

Keywords

Comments

Coincides with A248869 up to a(9) = 190.
a(n+1)/a(n) tends to 2.845331... - Vaclav Kotesovec, Jun 04 2019

Examples

			:  o  :  o  :    o   o  :    o     o   o  :
:     :  |  :   / \  |  :    |    / \  |  :
:     :  o  :  o   o o  :    o   o   o o  :
:     :     :        |  :   / \  |     |  :
:     :     :        o  :  o   o o     o  :
:     :     :           :              |  :
: n=1 : n=2 :  n=3      :  n=4         o  :
:.....:.....:...........:.................:
:   o     o       o     o     o     o   o :
:   |     |      / \   / \   / \   /|\  | :
:   o     o     o   o o   o o   o o o o o :
:   |    / \   / \    |     |   | |     | :
:   o   o   o o   o   o     o   o o     o :
:  / \  |             |                 | :
: o   o o             o                 o :
:                                       | :
: n=5                                   o :
:.........................................:
		

Crossrefs

Column k=2 of A318753.

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(g((i-1)$2)+j-1, j)*g(n-i*j, i-1), j=0..min(2, n/i))))
        end:
    a:= n-> g((n-1)$2):
    seq(a(n), n=0..40);
  • Mathematica
    g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i-1, i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, Min[2, n/i]}]]]; a[n_] := g[n-1, n-1]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 21 2017, translated from Maple *)