cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A214722 Number A(n,k) of solid standard Young tableaux of shape [[{n}^k],[n]]; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 16, 5, 1, 4, 91, 192, 14, 1, 5, 456, 5471, 2816, 42, 1, 6, 2145, 143164, 464836, 46592, 132, 1, 7, 9724, 3636776, 75965484, 48767805, 835584, 429, 1, 8, 43043, 91442364, 12753712037, 55824699632, 5900575762, 15876096, 1430
Offset: 0

Views

Author

Alois P. Heinz, Jul 26 2012

Keywords

Examples

			Square array A(n,k) begins:
   1,     1,        1,           1,              1,                 1, ...
   1,     2,        3,           4,              5,                 6, ...
   2,    16,       91,         456,           2145,              9724, ...
   5,   192,     5471,      143164,        3636776,          91442364, ...
  14,  2816,   464836,    75965484,    12753712037,     2214110119572, ...
  42, 46592, 48767805, 55824699632, 70692556053053, 98002078234748974, ...
		

Crossrefs

Columns k=1-4 give: A000108, A006335, A213978, A215220.
Rows n=0-3 give: A000012, A000027, A214824, A211505.
A(n,n) gives A258583.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    A:= (n, k)-> b([[n$k], [n]]):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_List] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_, k_] := b[{Array[n&, k], {n}}]; Table[Table[a[n, 1+d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

A215204 Number A(n,k) of solid standard Young tableaux of cylindrical shape lambda X k, where lambda ranges over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 4, 5, 1, 1, 10, 26, 10, 7, 1, 1, 28, 276, 258, 26, 11, 1, 1, 84, 3740, 14318, 3346, 76, 15, 1, 1, 264, 58604, 1161678, 1214358, 54108, 232, 22, 1, 1, 858, 1010616, 118316062, 741215012, 150910592, 1054256, 764, 30
Offset: 0

Views

Author

Alois P. Heinz, Aug 05 2012

Keywords

Examples

			Square array A(n,k) begins:
:  1,  1,     1,         1,            1,                1, ...
:  1,  1,     1,         1,            1,                1, ...
:  2,  2,     4,        10,           28,               84, ...
:  3,  4,    26,       276,         3740,            58604, ...
:  5, 10,   258,     14318,      1161678,        118316062, ...
:  7, 26,  3346,   1214358,    741215012,     620383261034, ...
: 11, 76, 54108, 150910592, 840790914296, 7137345113624878, ...
		

Crossrefs

Columns k=0-5 give: A000041, A000085, A215266, A290202, A290214, A290274.
Rows n=0+1, 2-5 give: A000012, 2*A000108, 2*A005789 + A006335, 2*A005790 + 2*A213978 + A114714, 2*A005791 + 2*A215220 + 2*A213932 + A214638.
Main diagonal gives A290225.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    g:= proc(n, i, k, l) `if`(n=0 or i=1, b(map(x-> [k$x], [l[], 1$n])),
           add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i))
        end:
    A:= (n, k)-> g(n, n, k, []):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]];
    g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}]& /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
    A[n_, k_] := g[n, n, k, {}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Sep 24 2022, after Alois P. Heinz *)

A214637 Number of solid standard Young tableaux of shape [[n,n,n],[n,n],[n]].

Original entry on oeis.org

1, 16, 17086, 61189172, 404233159860, 3880365678824980, 47959061464818182058, 711513280222442751394224, 12121127323153614807021655742, 230127245538294682127207785787376, 4767460278053986542112719904243778834, 106115342273795146740243750912097789131600
Offset: 0

Views

Author

Alois P. Heinz, Jul 23 2012

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    a:= n-> b([[n, n, n], [n, n], [n]]):
    seq(a(n), n=0..10);
  • Mathematica
    b[l_] := b[l] = With[{m := Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_] := b[{{n, n, n}, {n, n}, {n}}]; Table[a[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)

A214638 Number of solid standard Young tableaux of shape [[n,n,n],[n],[n]].

Original entry on oeis.org

1, 6, 936, 379366, 249664758, 221005209058, 239143562020194, 299233941746052998, 417999868371999142276, 636568066798406010872120, 1039267652960081699025215774, 1796704965351078502372895796786, 3258764657213579008313421745034602
Offset: 0

Views

Author

Alois P. Heinz, Jul 23 2012

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    a:= n-> b([[n, n, n], [n], [n]]):
    seq(a(n), n=0..10);
  • Mathematica
    b[l_] := b[l] = With[{m := Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_] := b[{{n, n, n}, {n}, {n}}]; Table[a[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)

A214631 Number A(n,k) of solid standard Young tableaux of shape [[(n)^(k+1)],[n]^k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 16, 1, 1, 20, 936, 192, 1, 1, 70, 85800, 379366, 2816, 1, 1, 252, 9962680, 1825221320, 249664758, 46592, 1, 1, 924, 1340103744, 14336196893200, 89261675900020, 221005209058, 835584, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 26 2012

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,         1,              1,                    1, ...
  1,    2,         6,             20,                   70, ...
  1,   16,       936,          85800,              9962680, ...
  1,  192,    379366,     1825221320,       14336196893200, ...
  1, 2816, 249664758, 89261675900020, 70351928759681296000, ...
		

Crossrefs

Columns k=0-2 give: A000012, A006335, A214638.
Rows n=0-1 give: A000012, A000984.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    A:= (n, k)-> b([[n$(k+1)], [n]$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[l_] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]] ] < j, 0, l[[i+1, j]] ] && l[[i, j]] > If[Length[l[[i]] ] == j, 0, l[[i, j+1]] ], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]] ]}], {i, 1, m}]]]; a[n_, k_] := b[{Array[n&, k+1], Sequence @@ Array[{n}&, k]}]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
Showing 1-5 of 5 results.