A006335
a(n) = 4^n*(3*n)!/((n+1)!*(2*n+1)!).
Original entry on oeis.org
1, 2, 16, 192, 2816, 46592, 835584, 15876096, 315031552, 6466437120, 136383037440, 2941129850880, 64614360416256, 1442028424527872, 32619677465182208, 746569714888605696, 17262927525017812992, 402801642250415636480, 9474719710174783733760, 224477974671833337692160
Offset: 0
G.f. = 1 + 2*x + 16*x^2 + 192*x^3 + 2816*x^4+ 46592*x^5 + 835584*x^6 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..700
- Andrei Asinowski, Cyril Banderier, and Sarah J. Selkirk, From Kreweras to Gessel: A walk through patterns in the quarter plane, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #30.
- Olivier Bernardi, Bijective counting of Kreweras walks and loopless triangulations, Journal of Combinatorial Theory, Series A 114:5 (2007), 931-956.
- M. Bousquet-Mélou, Walks in the quarter plane: Kreweras' algebraic model, arXiv:math/0401067 [math.CO], 2004-2006.
- M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008.
- Sam Hopkins and Martin Rubey, Promotion of Kreweras words, arXiv:2005.14031 [math.CO], 2020.
- G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.
- G. Kreweras and H. Niederhausen, Solution of an enumerative problem connected with lattice paths, European J. Combin., 2 (1981), 55-60.
Equals 2^(n-1) *
A000309(n-1) for n>1.
-
[4^n*Factorial(3*n)/(Factorial(n+1)*Factorial(2*n+1)) : n in [0..20]]; // Wesley Ivan Hurt, Nov 16 2014
-
A006335:=n->4^n*(3*n)!/((n+1)!*(2*n+1)!): seq(A006335(n), n=0..20); # Wesley Ivan Hurt, Nov 16 2014
-
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 3 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *)
Table[(4^n (3 n)! / ((n + 1)! (2 n + 1)!)), {n, 0, 200}] (* Vincenzo Librandi, Nov 17 2014 *)
-
{a(n) = if( n<0, 0, 4^n * (3*n)! / ((n+1)! * (2*n+1)!))}; /* Michael Somos, Jan 23 2003 */
-
def a(n):
return (4**n * binomial(3 * n, 2 * n)) // ((n + 1) * (2 * n + 1))
# F. Chapoton, Jun 01 2020
A213978
Number of solid standard Young tableaux of shape [[n,n,n],[n]].
Original entry on oeis.org
1, 3, 91, 5471, 464836, 48767805, 5900575762, 791402291063, 114754560003596, 17688389169462060, 2864042102057254739, 482894371222455465001, 84225614036198359288620, 15119622005825185224290830, 2782232873996840900804273236, 523114052492282720617167786279, 100231256005025286627952024093564, 19528383010645472628217323778258916
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..129
- Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux.
- S. B. Ekhad and D. Zeilberger, Number of Solid Standard Young Tableaux of shape [[n,n,n],[n]], (n=1..121); Local copy
- S. B. Ekhad and D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229, 2012
-
b:= proc(x, y, z, u) option remember; `if`({x, y, z, u}={0}, 1,
`if`(x>y and x>u, b(x-1, y, z, u), 0)+`if`(y>z, b(x, y-1, z, u), 0)+
`if`(z>0, b(x, y, z-1, u), 0)+`if`(u>0, b(x, y, z, u-1), 0))
end:
a:= n-> b(n$4):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 19 2012
-
b[x_, y_, z_, u_] := b[x, y, z, u] = If[Union[{x, y, z, u}] == {0}, 1, If[x>y && x>u, b[x-1, y, z, u], 0] + If[y>z, b[x, y-1, z, u], 0] + If[z>0, b[x, y, z-1, u], 0] + If[u>0, b[x, y, z, u-1], 0]]; a[n_] := b[n, n, n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)
A214631
Number A(n,k) of solid standard Young tableaux of shape [[(n)^(k+1)],[n]^k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 16, 1, 1, 20, 936, 192, 1, 1, 70, 85800, 379366, 2816, 1, 1, 252, 9962680, 1825221320, 249664758, 46592, 1, 1, 924, 1340103744, 14336196893200, 89261675900020, 221005209058, 835584, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 2, 6, 20, 70, ...
1, 16, 936, 85800, 9962680, ...
1, 192, 379366, 1825221320, 14336196893200, ...
1, 2816, 249664758, 89261675900020, 70351928759681296000, ...
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
A:= (n, k)-> b([[n$(k+1)], [n]$k]):
seq(seq(A(n, d-n), n=0..d), d=0..8);
-
b[l_] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]] ] < j, 0, l[[i+1, j]] ] && l[[i, j]] > If[Length[l[[i]] ] == j, 0, l[[i, j+1]] ], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]] ]}], {i, 1, m}]]]; a[n_, k_] := b[{Array[n&, k+1], Sequence @@ Array[{n}&, k]}]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A214824
Number of solid standard Young tableaux of shape [[(2)^n],[2]].
Original entry on oeis.org
2, 16, 91, 456, 2145, 9724, 43043, 187408, 806208, 3436720, 14545982, 61214960, 256411935, 1069854660, 4449173475, 18450500640, 76326664260, 315077780160, 1298203997610, 5340028714800, 21932944632690, 89963953083576, 368565304248846, 1508283816983776
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012.
- G. Kreweras, Sur les extensions lineaires d'une famille particuliere d'ordres partiels, Discrete Math., 27 (1979), 279-295.
- G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295. (Annotated scanned copy)
- Wikipedia, Young tableau
-
a:= proc(n) option remember; `if`(n=1, 2,
(4+(18+(22+4*n)*n)*n)*n*a(n-1)/(6+(-13+(1+(5+n)*n)*n)*n))
end:
seq(a(n), n=1..30);
-
a[1] = 2; a[n_] := a[n] = (4 + (18 + (22 + 4*n)*n)*n)*n*a[n - 1]/(6 + (-13 + (1 + (5 + n)*n)*n)*n); Array[a, 30] (* Jean-François Alcover, Nov 08 2017, translated from Maple *)
A215220
Number of solid standard Young tableaux of shape [[n,n,n,n],[n]].
Original entry on oeis.org
1, 4, 456, 143164, 75965484, 55824699632, 51274161733160, 55418842406649988, 67819708829687672202, 91539069926354814114556, 133752944758581353219955762, 208673064320580765981337783096, 343997162091593719562479905281938, 594344377404793356460064021706935470
Offset: 0
-
b:= proc(w, x, y, z, u) option remember;
`if`({w, x, y, z, u}={0}, 1, `if`(w>x and w>u, b(w-1, x, y, z, u), 0)+
`if`(x>y, b(w, x-1, y, z, u), 0)+ `if`(y>z, b(w, x, y-1, z, u), 0)+
`if`(z>0, b(w, x, y, z-1, u), 0)+ `if`(u>0, b(w, x, y, z, u-1), 0))
end:
a:= n-> b(n$5):
seq(a(n), n=0..20);
-
b[w_, x_, y_, z_, u_] := b[w, x, y, z, u] =
If[Union@{w, x, y, z, u} == {0}, 1,
If[w > x && w > u, b[w - 1, x, y, z, u], 0] +
If[x > y, b[w, x - 1, y, z, u], 0] +
If[y > z, b[w, x, y - 1, z, u], 0] +
If[z > 0, b[w, x, y, z - 1, u], 0] +
If[u > 0, b[w, x, y, z, u - 1], 0]];
a[n_] := b[n, n, n, n, n];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 08 2017, translated from Maple *)
A211505
Number of solid standard Young tableaux of shape [[(3)^n],[3]].
Original entry on oeis.org
5, 192, 5471, 143164, 3636776, 91442364, 2293620329, 57583680440, 1449149180310, 36577522323264, 926132803592304, 23521922685452320, 599176262762762880, 15305331537941936820, 391972832520910172865, 10062682947669846370800, 258904473727824391312650
Offset: 1
-
a:=proc(n) option remember; `if`(n<3, [5, 192][n],
((-300307980720421134*n^6 -450257143569814251*n^5 +520721206232593545*n^4
+237675576478617990*n^3 -244917832991741721*n^2 +20947752092648421*n
+7263907687560150)*a(n-2) +(20284627624231332*n^6 +74969736339564876*n^5
-90577816139486502*n^4 -578021108537112633*n^3 -713543105276625459*n^2
-309855589348004634*n -29055630750240600)*a(n-1)) / (339337400732270*n^6
+2086412513047793*n^5 -1761594949059583*n^4 -24340927184757907*n^3
-25005499944921313*n^2 +25705682578023740*n +29939073413286900))
end:
seq(a(n), n=1..20);
-
Table[(600 + 2874*n + 4709*n^2 + 3246*n^3 + 1019*n^4 + 144*n^5 + 8*n^6)*(2+3*n)! / (2*(3+2*n)*(5+2*n)*(n-1)!*(2+n)!*(5+n)!), {n, 1, 20}] (* Vaclav Kotesovec, Jul 16 2014 *)
A258583
Number of solid standard Young tableaux of shape [[{n}^n],[n]].
Original entry on oeis.org
1, 1, 16, 5471, 75965484, 70692556053053, 6614511157454872712100, 87353366195666890516586545068535, 217757982462900115559339884671224174403391534, 132100470099008733697710444705793312015509514686031193798241, 24431421930145927713526351934816506384811205836191828228900485331569907542066
Offset: 0
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
a:= n-> b([[n$n], [n]]):
seq(a(n), n=0..8);
-
b[l_] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[ If[l[[i, j]] > If[i == m || Length[l[[i+1]]] If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[ l[[i]], j -> l[[i, j]]-1]]], 0], {j, Length[l[[i]]]}], {i, m}]]];
a[n_] := b[{Array[n&, n], {n}}];
Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Aug 25 2021, after Alois P. Heinz *)
A258586
Number of solid standard Young tableaux of shape [[{n}^(n+1)],[n]^n].
Original entry on oeis.org
1, 2, 936, 1825221320, 70351928759681296000, 160978956785364112335731878007698260, 51488321677815455036453939239317069333712945710369620220, 4648889159675386017282064494039528050991187044317172798976485350954735075040045120
Offset: 0
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
a:= n-> b([[n$(n+1)], [n]$n]):
seq(a(n), n=0..5);
Showing 1-8 of 8 results.
Comments