A000139
a(n) = 2*(3*n)! / ((2*n+1)!*(n+1)!).
Original entry on oeis.org
2, 1, 2, 6, 22, 91, 408, 1938, 9614, 49335, 260130, 1402440, 7702632, 42975796, 243035536, 1390594458, 8038677054, 46892282815, 275750636070, 1633292229030, 9737153323590, 58392041019795, 352044769046880, 2132866978427640, 12980019040145352, 79319075627675556
Offset: 0
G.f. = 2 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + 408*x^6 + 1938*x^7 + ...
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 365.
- Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, pp. 65-82 of "A Century of Advancing Mathematics", ed. S. F. Kennedy et al., MAA Press 2015.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
- S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. See p. 399 Table A.7
- W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.41.
- T. D. Noe, Table of n, a(n) for n = 0..200
- A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011. See p. 15.
- E. Ben-Naim and P. L. Krapivsky, Popularity-Driven Networking, arXiv preprint arXiv:1112.0049 [cond-mat.stat-mech], 2011.
- Alin Bostan, Frédéric Chyzak, Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi, Vincent Pilaud, and Kurt Stoeckl, Diagonals of permutahedra and associahedra, Sém. Lotharingien Comb., 37th Formal Power Series Alg. Comb. (FPSAC 2025). See pp. 10-11.
- David Bevan, Robert Brignall, Andrew Elvey Price and Jay Pantone, A structural characterisation of Av(1324) and new bounds on its growth rate, arXiv preprint arXiv:1711.10325 [math.CO], 2017.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
- Alin Bostan, Frédéric Chyzak, and Vincent Pilaud, Refined product formulas for Tamari intervals, arXiv:2303.10986 [math.CO], 2023.
- M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, algebraic series and map enumeration, arXiv:math/0504018 [math.CO], 2005; J Comb. Thy. B 96 (2006), 623-672.
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
- Colin Defant, Counting 3-Stack-Sortable Permutations, arXiv:1903.09138 [math.CO], 2019.
- A. Del Lungo, F. Del Ristoro and J.-G. Penaud, Left ternary trees and non-separable rooted planar maps, Theor. Comp. Sci., 233, 2000, 201-215.
- E. Duchi, V. Guerrini, S. Rinaldi and G. Schaeffer, Fighting fish: enumerative properties, Sém. Lothar. Combin. 78B (2017), Art. 43, 12 pp.
- E. Duchi, V. Guerrini, S. Rinaldi, and G. Schaeffer, Fighting fish, J. Phys. A, Math. Theor. 50, No. 2, Article ID 024002, 16 p. (2017).
- Enrica Duchi and Corentin Henriet, A bijection between rooted planar maps and generalized fighting fish, arXiv:2210.16635 [math.CO], 2022.
- S. Dulucq, S. Gire, and O. Guibert, A combinatorial proof of J. West's conjecture Discrete Math. 187 (1998), no. 1-3, 71--96. MR1630680(99f:05053).
- S. Dulucq, S. Gire, and J. West, Permutations with forbidden subsequences and nonseparable planar maps, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993). Discrete Math. 153 (1996), no. 1-3, 85-103. MR1394948 (98a:05081)
- Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, MAA Focus, August/September 2015, pp. 33-34. [Annotated scanned copy]
- W. Fang, Fighting fish and two-stack sortable permutations, arXiv preprint arXiv:1711.05713 [math.CO], 2017.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 713
- I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, Electron. J Combin. 13 (2006), paper 53.
- Juan B. Gil, Oscar A. Lopez, and Michael D. Weiner, A positional statistic for 1324-avoiding permutations, arXiv:2311.18227 [math.CO], 2023.
- O. Guibert, Stack words, standard Young tableaux, permutations with forbidden subsequences and planar maps, Discr. Math., 210 (2000), 71-85.
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- S. Kitaev, P. Salimov, C. Severs and H. Ulfarsson, Restricted non-separable planar maps and some pattern avoiding permutations, 2012.
- S. Kitaev, P. Salimov, C. Severs and H. Ulfarsson, Restricted non-separable planar maps and some pattern avoiding permutations, Discrete Applied Mathematics, Volume 161, Issues 16-17, November 2013, Pages 2514-2526.
- Sergey Kitaev, Anna de Mier, and Marc Noy, On the number of self-dual rooted maps, European J. Combin. 35 (2014), 377-387. MR3090510. See Theorem 1.
- Sergey Kitaev, Pavel Salimov, Christopher Severs, and Henning Ulfarsson, Restricted non-separable planar maps and some pattern avoiding permutations, arXiv preprint arXiv:1202.1790 [math.CO], 2012. [Original title: Restricted rooted non-separable planar maps]
- Arturo Merino and Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, arXiv:2103.09333 [math.CO], 2021.
- Alois Panholzer, Parking function varieties for combinatorial tree models, arXiv:2007.14676 [math.CO], 2020.
- Permutation Pattern Avoidance Library (PermPAL), 1324 Domino
- L.-F. Préville-Ratelle and X. Viennot, An extension of Tamari lattices, arXiv preprint arXiv:1406.3787 [math.CO], 2014.
- G. Schaeffer, A combinatorial interpretation of super-Catalan numbers of order two, (2001).
- W. T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
- J. West, Sorting twice through a stack, Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991), Theoret. Comput. Sci. 117 (1993), no. 1-2, 303-313.
- D. Zeilberger, A proof of Julian West's conjecture that the number of two-stacksortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!), Discrete Math., 102 (1992), 85-93.
- P. Zinn-Justin and J.-B. Zuber, Matrix integrals and the counting of tangles and links, Discrete Math 246 (2002), 343-360.
- P. Zinn-Justin and J.-B. Zuber, Matrix integrals and the generation and counting of virtual tangles and links, arXiv:math-ph/0303049, 2003; J. Knot Theor. Ramifications 13 (2004) 325-356.
-
a000139 0 = 2
a000139 n = ((3 * n) `a007318` (2 * n + 1)) `div` a000217 n
-- Reinhard Zumkeller, Feb 17 2013
-
[2*Factorial(3*n)/(Factorial(2*n+1)*Factorial(n+1)): n in [0..25]]; // Vincenzo Librandi, Apr 20 2015
-
A000139 := n->2*(3*n)!/((2*n+1)!*((n+1)!)): seq(A000139(n), n=0..23);
-
Table[(2(3n)!)/((2n+1)!(n+1)!),{n,0,30}] (* Harvey P. Dale, Mar 31 2013 *)
-
a(n)=binomial(3*n,n)*2/((n+1)*(2*n+1)); \\ Joerg Arndt, Jul 21 2014
-
from sympy import binomial
def A000139(n): return (binomial(3*n, n)*2)//((n+1)*(2*n+1))
-
A000139_list = [2]
for n in range(1,30):
A000139_list.append(3*(3*n-2)*(3*n-1)*A000139_list[-1]//(2*n+2)//(2*n+1)) # Chai Wah Wu, Apr 02 2021
-
def A000139(n): return (binomial(3*n, n)*2)//((n+1)*(2*n+1))
[A000139(n) for n in (0..23)] # Peter Luschny, Jun 17 2013
A000309
Number of rooted planar bridgeless cubic maps with 2n nodes.
Original entry on oeis.org
1, 1, 4, 24, 176, 1456, 13056, 124032, 1230592, 12629760, 133186560, 1436098560, 15774990336, 176028860416, 1990947110912, 22783499599872, 263411369705472, 3073132646563840, 36143187370967040, 428157758086840320, 5105072641718353920, 61228492804372561920
Offset: 0
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Marie Albenque, Dominique Poulalhon, A Generic Method for Bijections between Blossoming Trees and Planar Maps, Electron. J. Combin., 22 (2015), #P2.38.
- Dario Benedetti, Sylvain Carrozza, Reiko Toriumi, Guillaume Valette, Multiple scaling limits of U(N)^2 X O(D) multi-matrix models, arXiv:2003.02100 [math-ph], 2020.
- Olivier Bernardi, Bijective counting of Kreweras walks and loopless triangulations, Journal of Combinatorial Theory, Series A 114:5 (2007), 931-956.
- Junliang Cai, Yanpei Liu, The enumeration of rooted nonseparable nearly cubic maps, Discrete Math. 207 (1999), no. 1-3, 9--24. MR1710479 (2000g:05074). See (31).
- Robert Cori and Gilles Schaeffer, Description trees and Tutte formulas, Theoretical Computer Science 292:1 (2003), 165-183.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- Hsien-Kuei Hwang, Mihyun Kang, Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- R. C. Mullin, On counting rooted triangular maps, Canad. J. Math., v.17 (1965), 373-382.
- Elena Patyukova, Taylor Rottreau, Robert Evans, Paul D. Topham, Martin J. Greenall, Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment, Macromolecules (2018) Vol. 51, No. 18, 7032-7043. Also arXiv:1805.09878 [math.CA], 2018.
- W. T. Tutte, A census of Hamiltonian polygons, Canad. J. Math., 14 (1962), 402-417.
- W. T. Tutte, On the enumeration of four-colored maps, SIAM J. Appl. Math., 17 (1969), 454-460.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv:1803.10080 [math.LO], March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
-
List([0..20], n -> 2^(n+1)*Factorial(3*n)/(Factorial(n)* Factorial(2*n+2))); # G. C. Greubel, Nov 29 2018
-
[2^(n+1)*Factorial(3*n)/(Factorial(n)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Aug 10 2014
-
a := n -> 2^(n+1)*(3*n)!/(n!*(2*n+2)!);
A000309 := n -> -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1): seq(simplify(A000309(n)), n = 0..21); # Peter Luschny, Oct 28 2022
-
f[n_] := 2^n(3n)!/((n + 1)!(2n + 1)!); Table[f[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 21 2004 *)
Join[{1},RecurrenceTable[{a[1]==1,a[n]==4a[n-1] Binomial[3n,3]/ Binomial[2n+2,3]}, a[n],{n,20}]] (* Harvey P. Dale, May 11 2011 *)
-
a(n) = 2^(n+1)*(3*n)!/(n!*(2*n+2)!); \\ Michel Marcus, Aug 09 2014
-
[2^n*factorial(3*n)/(factorial(n+1)*factorial(2*n+1))for n in range(20)] # G. C. Greubel Nov 29 2018
A176129
Number A(n,k) of solid standard Young tableaux of shape [[n*k,n],[n]]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 6, 16, 0, 1, 12, 174, 192, 0, 1, 20, 690, 7020, 2816, 0, 1, 30, 1876, 52808, 325590, 46592, 0, 1, 42, 4140, 229680, 4558410, 16290708, 835584, 0, 1, 56, 7986, 738192, 31497284, 420421056, 854630476, 15876096, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 6, 12, 20, 30, ...
0, 16, 174, 690, 1876, 4140, ...
0, 192, 7020, 52808, 229680, 738192, ...
0, 2816, 325590, 4558410, 31497284, 146955276, ...
0, 46592, 16290708, 420421056, 4600393936, 31113230148, ...
Columns k=0-10 give:
A000007,
A006335,
A214801,
A215686,
A246619,
A246620,
A246621,
A246632,
A246633,
A246634,
A246635.
-
b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y), `if`(z>x, 0,
`if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+
`if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0))))
end:
A:= (n, k)-> b(n*k, n, n):
seq(seq(A(n, d-n), n=0..d), d=0..8);
-
b [x_, y_, z_] := b[x, y, z] = If[z > y, b[x, z, y], If[z > x, 0, If[Union[{x, y, z}] == {0}, 1, If[x > y && x > z, b[x-1, y, z], 0] + If[y > 0, b[x, y-1, z], 0] + If[z > 0, b[x, y, z-1], 0]]]]; a[n_, k_] := b[n*k, n, n]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)
A214722
Number A(n,k) of solid standard Young tableaux of shape [[{n}^k],[n]]; square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 16, 5, 1, 4, 91, 192, 14, 1, 5, 456, 5471, 2816, 42, 1, 6, 2145, 143164, 464836, 46592, 132, 1, 7, 9724, 3636776, 75965484, 48767805, 835584, 429, 1, 8, 43043, 91442364, 12753712037, 55824699632, 5900575762, 15876096, 1430
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
2, 16, 91, 456, 2145, 9724, ...
5, 192, 5471, 143164, 3636776, 91442364, ...
14, 2816, 464836, 75965484, 12753712037, 2214110119572, ...
42, 46592, 48767805, 55824699632, 70692556053053, 98002078234748974, ...
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
A:= (n, k)-> b([[n$k], [n]]):
seq(seq(A(n, 1+d-n), n=0..d), d=0..10);
-
b[l_List] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_, k_] := b[{Array[n&, k], {n}}]; Table[Table[a[n, 1+d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
A215204
Number A(n,k) of solid standard Young tableaux of cylindrical shape lambda X k, where lambda ranges over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 4, 5, 1, 1, 10, 26, 10, 7, 1, 1, 28, 276, 258, 26, 11, 1, 1, 84, 3740, 14318, 3346, 76, 15, 1, 1, 264, 58604, 1161678, 1214358, 54108, 232, 22, 1, 1, 858, 1010616, 118316062, 741215012, 150910592, 1054256, 764, 30
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, ...
: 2, 2, 4, 10, 28, 84, ...
: 3, 4, 26, 276, 3740, 58604, ...
: 5, 10, 258, 14318, 1161678, 118316062, ...
: 7, 26, 3346, 1214358, 741215012, 620383261034, ...
: 11, 76, 54108, 150910592, 840790914296, 7137345113624878, ...
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
g:= proc(n, i, k, l) `if`(n=0 or i=1, b(map(x-> [k$x], [l[], 1$n])),
add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i))
end:
A:= (n, k)-> g(n, n, k, []):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]];
g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}]& /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
A[n_, k_] := g[n, n, k, {}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Sep 24 2022, after Alois P. Heinz *)
A340591
Number A(n,k) of n*(k+1)-step k-dimensional nonnegative closed lattice walks starting at the origin and using steps that increment all components or decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 16, 5, 1, 1, 24, 288, 192, 14, 1, 1, 120, 9216, 24444, 2816, 42, 1, 1, 720, 460800, 7303104, 2738592, 46592, 132, 1, 1, 5040, 33177600, 4234233600, 8204167296, 361998432, 835584, 429, 1, 1, 40320, 3251404800, 4223111040000, 59027412643200, 11332298092032, 53414223552, 15876096, 1430, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 2, 6, 24, 120, ...
1, 2, 16, 288, 9216, 460800, ...
1, 5, 192, 24444, 7303104, 4234233600, ...
1, 14, 2816, 2738592, 8204167296, 59027412643200, ...
1, 42, 46592, 361998432, 11332298092032, 1052109889288796160, ...
-
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> add(
`if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..k)+
`if`(add(i, i=l)+k x+1, l)), 0))(nops(l)))
end:
A:= (n, k)-> b(k*n+n, [0$k]):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, l_] := b[n, l] = If[n == 0, 1, Function[k, Sum[
If[l[[i]]>0, b[n-1, Sort[ReplacePart[l, i -> l[[i]]-1]]], 0], {i, 1, k}]+
If[Sum[i, {i, l}] + k < n, b[n - 1, Map[#+1&, l]], 0]][Length[l]]];
A[n_, k_] := b[k*n + n, Table[0, {k}]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 26 2021, after Alois P. Heinz *)
A140136
Numerator coefficients for generators of lattice path enumeration square array A111910.
Original entry on oeis.org
1, 1, 1, 1, 7, 7, 1, 1, 20, 75, 75, 20, 1, 1, 42, 364, 1001, 1001, 364, 42, 1, 1, 75, 1212, 6720, 15288, 15288, 6720, 1212, 75, 1, 1, 121, 3223, 30723, 127908, 255816, 255816, 127908, 30723, 3223, 121, 1, 1, 182, 7371, 109538, 737737, 2510508
Offset: 0
Triangle begins:
1;
1, 1;
1, 7, 7, 1;
1, 20, 75, 75, 20, 1;
1, 42, 364, 1001, 1001, 364, 42, 1;
1, 75, 1212, 6720, 15288, 15288, 6720, 1212, 75, 1;
...
- Michael De Vlieger, Table of n, a(n) for n = 0..10100 (rows 0..100, flattened)
- G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du B.U.R.O. 6 (1965), 9-107; see p. 93.
- G. Kreweras and H. Niederhausen, Solution of an enumerative problem connected with lattice paths, European J. Combin. 2 (1981), 55-60; see p. 60.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 8.
-
T[n_, k_] := ((k + n - 1)! (2 (k + n) - 3)! HypergeometricPFQ[{2 - 3 k, 1/2 - n, 1 - n, -n}, {1 - k - n, 3/2 - k - n, 2 - k - n}, 1])/(k! (2 k - 1)! n! (2 n - 1)!);
Join[{{1}}, Table[T[n, k], {k, 2, 8}, {n, 1, 2 k - 2}]] // Flatten (* Peter Luschny, Sep 04 2019 *)
A214631
Number A(n,k) of solid standard Young tableaux of shape [[(n)^(k+1)],[n]^k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 16, 1, 1, 20, 936, 192, 1, 1, 70, 85800, 379366, 2816, 1, 1, 252, 9962680, 1825221320, 249664758, 46592, 1, 1, 924, 1340103744, 14336196893200, 89261675900020, 221005209058, 835584, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 2, 6, 20, 70, ...
1, 16, 936, 85800, 9962680, ...
1, 192, 379366, 1825221320, 14336196893200, ...
1, 2816, 249664758, 89261675900020, 70351928759681296000, ...
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
A:= (n, k)-> b([[n$(k+1)], [n]$k]):
seq(seq(A(n, d-n), n=0..d), d=0..8);
-
b[l_] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]] ] < j, 0, l[[i+1, j]] ] && l[[i, j]] > If[Length[l[[i]] ] == j, 0, l[[i, j+1]] ], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]] ]}], {i, 1, m}]]]; a[n_, k_] := b[{Array[n&, k+1], Sequence @@ Array[{n}&, k]}]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A098272
a(n) = 2^(2n+1) * binomial(3n,n)/(2n+1).
Original entry on oeis.org
2, 8, 96, 1536, 28160, 559104, 11698176, 254017536, 5670567936, 129328742400, 3000426823680, 70587116421120, 1679973370822656, 40376795886780416, 978590323955466240, 23890230876435382272, 586939535850605641728
Offset: 0
-
[2^(2*n+1)*Binomial(3*n, n)/(2*n+1): n in [0..20]]; // Vincenzo Librandi, Oct 03 2011
-
Table[2^(2n+1) Binomial[3n,n]/(2n+1),{n,0,20}] (* Harvey P. Dale, Oct 02 2011 *)
-
a(n)=2^(2*n+1)*binomial(3*n,n)/(2*n+1)
-
a(n)=polcoeff(serreverse(Ser(x/(2+x^3))),3*n+1)
A340540
Number of walks of length 4n in the first octant using steps (1,1,1), (-1,0,0), (0,-1,0), and (0,0,-1) that start and end at the origin.
Original entry on oeis.org
1, 6, 288, 24444, 2738592, 361998432, 53414223552, 8525232846072, 1443209364298944, 255769050813120576, 47020653859202576640, 8907614785269428079168, 1730208409741026141405696, 343266632435192859791576064, 69350551439109880798294334208
Offset: 0
-
b:= proc(n, l) option remember; `if`(n=0, 1, `if`(add(i, i=l)+3 x+1, l)), 0) +add(`if`(l[i]>0,
b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..3))
end:
a:= n-> b(4*n, [0$3]):
seq(a(n), n=0..15); # Alois P. Heinz, Jan 12 2021
-
b[n_, l_] := b[n, l] = If[n == 0, 1, If[Total[l] + 3 < n,
b[n-1, l+1]], 0] + Sum[If[l[[i]] > 0,
b[n-1, Sort[ReplacePart[l, i -> l[[i]]-1]]], 0], {i, 1, 3}] /. Null -> 0;
a[n_] := b[4n, {0, 0, 0}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 10 2021, after Alois P. Heinz *)
-
import itertools as it
i = 0
while 1:
counts = {(a,b,c):0 for a,b,c in it.product(range(i+1), repeat=3)}
counts[0,0,0] = 1
for _ in range(4*i):
update = {(a,b,c):0 for a,b,c in it.product(range(i+1), repeat=3)}
for x,y,z in counts:
if counts[x,y,z] != 0:
for coord in [(x+1,y+1,z+1), (x-1,y,z), (x,y-1,z), (x,y,z-1)]:
if coord in update:
update[coord] += counts[x,y,z]
counts = update
print(i, counts[0,0,0])
i += 1
Showing 1-10 of 11 results.
Comments