cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A000139 a(n) = 2*(3*n)! / ((2*n+1)!*(n+1)!).

Original entry on oeis.org

2, 1, 2, 6, 22, 91, 408, 1938, 9614, 49335, 260130, 1402440, 7702632, 42975796, 243035536, 1390594458, 8038677054, 46892282815, 275750636070, 1633292229030, 9737153323590, 58392041019795, 352044769046880, 2132866978427640, 12980019040145352, 79319075627675556
Offset: 0

Views

Author

N. J. A. Sloane, entry revised Apr 24 2012

Keywords

Comments

This sequence arises in many different contexts, and over the years it has had several different definitions. I have now changed the definition back to one of the earlier ones, a self-contained formula. - N. J. A. Sloane, Apr 24 2012
The number of 2-stack sortable permutations on n letters (n >= 1).
The number of rooted non-separable planar maps with n+1 edges. - Valery A. Liskovets, Mar 17 2005
The shifted sequence starting with a(1): Number of quadrangular dissections of a square, counted by the number of vertices. Rooted, non-separable planar maps with no multiple edges, in which each non-root face has degree 4.
Number of left ternary trees having n nodes (n>=1). - Emeric Deutsch, Jul 23 2006
A combinatorial interpretation for this sequence in terms of a family of plane trees is given in [Schaeffer, Corollary 2 with k = 3]. - Peter Bala, Oct 12 2011
Number of canopy intervals in the Tamari lattices, see [Préville-Ratelle and Viennot, section 6]. - F. Chapoton, Apr 19 2015
The number of fighting fish (branching polyominoes). - David Bevan, Jan 10 2018
The number of 1324-avoiding dominoes (gridded permutations). - David Bevan, Jan 10 2018
For n > 0, a(n) is the number of simple strong triangulations of a fixed quadrilateral with n interior nodes. See A210664. - Andrew Howroyd, Feb 24 2021
Conjecture: a(n) is odd iff n is a term of A022341. - Peter Bala, Jul 24 2025

Examples

			G.f. = 2 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + 408*x^6 + 1938*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 365.
  • Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, pp. 65-82 of "A Century of Advancing Mathematics", ed. S. F. Kennedy et al., MAA Press 2015.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. See p. 399 Table A.7
  • W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.41.

Crossrefs

Programs

  • Haskell
    a000139 0 = 2
    a000139 n = ((3 * n) `a007318` (2 * n + 1)) `div` a000217 n
    -- Reinhard Zumkeller, Feb 17 2013
    
  • Magma
    [2*Factorial(3*n)/(Factorial(2*n+1)*Factorial(n+1)): n in [0..25]]; // Vincenzo Librandi, Apr 20 2015
  • Maple
    A000139 := n->2*(3*n)!/((2*n+1)!*((n+1)!)): seq(A000139(n), n=0..23);
  • Mathematica
    Table[(2(3n)!)/((2n+1)!(n+1)!),{n,0,30}] (* Harvey P. Dale, Mar 31 2013 *)
  • PARI
    a(n)=binomial(3*n,n)*2/((n+1)*(2*n+1)); \\ Joerg Arndt, Jul 21 2014
    
  • Python
    from sympy import binomial
    def A000139(n): return (binomial(3*n, n)*2)//((n+1)*(2*n+1))
    
  • Python
    A000139_list = [2]
    for n in range(1,30):
        A000139_list.append(3*(3*n-2)*(3*n-1)*A000139_list[-1]//(2*n+2)//(2*n+1)) # Chai Wah Wu, Apr 02 2021
    
  • Sage
    def A000139(n): return (binomial(3*n, n)*2)//((n+1)*(2*n+1))
    [A000139(n) for n in (0..23)]  # Peter Luschny, Jun 17 2013
    

Formula

a(n) = 2*binomial(3*n, 2*n+1)/(n*(n+1)), or 2*(3*n)!/((2*n+1)!*((n+1)!)).
Using Stirling's formula in A000142 it is easy to get the asymptotic expression a(n) ~ (27/4)^n / (sqrt(Pi*n / 3) * (2*n + 1) * (n + 1)). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
G.f.: A(z) = 2 + z*B(z), where B(z) = 1 - 8*z + 2*z*(5-6*z)*B - 2*z^2*(1+3*z)*B^2 - z^4*B^3.
G.f.: (2/(3*x)) * (hypergeom([-2/3, -1/3],[1/2],(27/4)*x)-1). - Mark van Hoeij, Nov 02 2009
G.f.: (2-3*R)/(R-1)^2 where R := RootOf(x-t*(t-1)^2,t) is an algebraic function in Maple notation. - Mark van Hoeij, Nov 08 2011
G.f.: 2*Q(0), where Q(k) = 1 + 3*x*(3*k+1)*(6*k+1)/(2*(k+1)*(4*k+3) - 6*x*(k+1)*(3*k+2)*(4*k+3)*(6*k+5)/(3*x*(3*k+2)*(6*k+5) + (2*k+3)*(4*k+5)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
E.g.f.: 2*Q(0), where Q(k) = 1 + 3*x*(3*k+1)*(6*k+1)/(2*(k+1)*(2*k+1)*(4*k+3) - 6*x*(k+1)*(2*k+1)*(3*k+2)*(4*k+3)*(6*k+5)/(3*x*(3*k+2)*(6*k+5) + (2*k+2)*(2*k+3)*(4*k+5)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) = A007318(3*n, 2*n+1)/A000217(n) for n > 0. - Reinhard Zumkeller, Feb 17 2013
a(n) is the n-th Hausdorff moment of the positive function w(x) defined on (0,27) which is equal to w(x) = 3*sqrt(3)*2^(2/3)*(3-sqrt(81-12*x)/9)*(1+sqrt(81-12*x)/9)^(1/3)/(8*Pi*x^(2/3))-sqrt(3)*2^(1/3)*(3+sqrt(81-12*x)/9)*(1+sqrt(81-12*x)/9)^(-1/3)/(4*Pi*x^(1/3)), that is, a(n) is the integral Integral_{x=0..27/4} x^n*w(x) dx, n >= 0. The function w(x) is unique. - Karol A. Penson, Jun 17 2013
D-finite with recurrence 2*(n+1)*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Aug 21 2014
G.f. A(z) is related to the g.f. M(z) of A000168 by M(z) = 1 + A(z*M(z)^2) (see Tutte 1963, equation 6.3). - Noam Zeilberger, Nov 02 2016
From Ilya Gutkovskiy, Jan 17 2017: (Start)
E.g.f.: 2*2F2(1/3,2/3; 3/2,2; 27*x/4).
Sum_{n>=0} 1/a(n) = (1/2)*3F2(1,3/2,2; 1/3,2/3; 4/27) = 2.226206199291261... (End)
G.f. A(z) is the solution to the initial value problem 4*A + 2*z*A' = 8 + 3*z*A + 9*z^2*A' + 2*z^2*A*A', A(0) = 2. - Bjarki Ágúst Guðmundsson, Jul 03 2017
a(n+1) = a(n)*3*(3*n+1)*(3*n+2)/(2*(n+2)*(2*n+3)). - Chai Wah Wu, Apr 02 2021
a(n) = 4*(3*n)!/(n!*(2*n+2)!). - Chai Wah Wu, Dec 15 2021
From Peter Bala, Feb 05 2022: (Start)
O.g.f.: A(x) = T(x)*(3 - T(x)), where T(x) = 1 + x*T(x)^3 is the o.g.f. of A001764.
(1/x)*(A(x) - 2)/(A(x) - 1) = 1 + x + 3*x^2 + 11*x^3 + 46*x^4 + 209*x^5 + ... is the o.g.f. of A233389.
1 + 2*x*A'(2*x)/A(2*x) = 1 + x + 7*x^2 + 61*x^3 + 591*x^4 + 6101*x^6 + ... is the o.g.f. of A218473.
Let B(x) = 1 + x*(A(x) - 1). Then x*B'(x)/B(x) = x + x^2 + 4*x^3 + 17*x^4 + 81*x^5 + ... is the o.g.f. of A121545. (End)

A000309 Number of rooted planar bridgeless cubic maps with 2n nodes.

Original entry on oeis.org

1, 1, 4, 24, 176, 1456, 13056, 124032, 1230592, 12629760, 133186560, 1436098560, 15774990336, 176028860416, 1990947110912, 22783499599872, 263411369705472, 3073132646563840, 36143187370967040, 428157758086840320, 5105072641718353920, 61228492804372561920
Offset: 0

Views

Author

Keywords

Comments

Also counts rooted planar non-separable triangulations with 3n edges. - Valery A. Liskovets, Dec 01 2003
Equivalently, rooted planar loopless triangulations with 2n triangles. - Noam Zeilberger, Oct 06 2016
Description trees of type (2,2) with n edges. (A description tree of type (a,b) is a rooted plane tree where every internal node is labeled by an integer between a and [b + sum of labels of its children], every leaf is labeled a, and the root is labeled [b + sum of labels of its children]. See Definition 1 and Section 5.2 of Cori and Schaeffer 2003.) - Noam Zeilberger, Oct 08 2017
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • GAP
    List([0..20], n -> 2^(n+1)*Factorial(3*n)/(Factorial(n)* Factorial(2*n+2))); # G. C. Greubel, Nov 29 2018
  • Magma
    [2^(n+1)*Factorial(3*n)/(Factorial(n)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Aug 10 2014
    
  • Maple
    a := n -> 2^(n+1)*(3*n)!/(n!*(2*n+2)!);
    A000309 := n -> -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1): seq(simplify(A000309(n)), n = 0..21); # Peter Luschny, Oct 28 2022
  • Mathematica
    f[n_] := 2^n(3n)!/((n + 1)!(2n + 1)!); Table[f[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 21 2004 *)
    Join[{1},RecurrenceTable[{a[1]==1,a[n]==4a[n-1] Binomial[3n,3]/ Binomial[2n+2,3]}, a[n],{n,20}]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n) = 2^(n+1)*(3*n)!/(n!*(2*n+2)!); \\ Michel Marcus, Aug 09 2014
    
  • Sage
    [2^n*factorial(3*n)/(factorial(n+1)*factorial(2*n+1))for n in range(20)] # G. C. Greubel Nov 29 2018
    

Formula

a(n) = 2^(n-1) * A000139(n) for n > 0.
a(n) = 4*a(n-1)*binomial(3*n, 3) / binomial(2*n+2, 3).
a(n) = 2^n*(3*n)!/ ( (n+1)!*(2*n+1)! ).
G.f.: (1/(6*x)) * (hypergeom([ -2/3, -1/3],[1/2],(27/2)*x)-1). - Mark van Hoeij, Nov 02 2009
a(n) ~ 3^(3*n+1/2)/(sqrt(Pi)*2^(n+2)*n^(5/2)). - Ilya Gutkovskiy, Oct 06 2016
D-finite with recurrence (n+1)*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Nov 02 2018
a(n) = -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1). The a(n) are values of the polynomials A358091. - Peter Luschny, Oct 28 2022
From Karol A. Penson, Feb 24 2025: (Start)
G.f.: hypergeom([1/3, 2/3, 1], [3/2, 2], (27*z)/2).
G.f. A(z) satisfies: - 1 + 27*z + (-36*z + 1)*A(z) + 8*z*A(z)^2 + 16*z^2*A(z)^3 = 0.
G.f.: ((4*sqrt(4 - 54*z) + 12*i*sqrt(6)*sqrt(z))^(1/3)*(sqrt(z*(4 - 54*z)) - 9*i*sqrt(6)*z) + (4*sqrt(4 - 54*z) - 12*i*sqrt(6)*sqrt(z))^(1/3)*(9*i*sqrt(6)*z + sqrt(z*(4 - 54*z))) - 8*sqrt(z))/(48*z^(3/2)), where i = sqrt(-1) is the imaginary unit.
a(n) = Integral_{x=0..27/2} x^n*W(x), where W(x) = (6^(1/3)*(9 + sqrt(81 - 6*x))^(2/3)*(9*sqrt(3) - sqrt(27 - 2*x)) - 2^(2/3)*3^(1/6)*(27 + sqrt(81 - 6*x))*x^(1/3))/(48*Pi*(9 + sqrt(81 - 6*x))^(1/3)*x^(2/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem for x on (0, 27/2). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with singularity x^(-2/3), and for x > 0 is monotonically decreasing to zero at x = 27/2. (End)

Extensions

Definition clarified by Michael Albert, Oct 24 2008

A176129 Number A(n,k) of solid standard Young tableaux of shape [[n*k,n],[n]]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 16, 0, 1, 12, 174, 192, 0, 1, 20, 690, 7020, 2816, 0, 1, 30, 1876, 52808, 325590, 46592, 0, 1, 42, 4140, 229680, 4558410, 16290708, 835584, 0, 1, 56, 7986, 738192, 31497284, 420421056, 854630476, 15876096, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 29 2012

Keywords

Comments

In general, column k is (for k > 1) asymptotic to sqrt((k+2)*(k^2 - 20*k - 8 + sqrt(k*(k+8)^3)) / (8*k^3)) * ((k+2)^(k+2)/k^k)^n / (Pi*n). - Vaclav Kotesovec, Aug 31 2014

Examples

			Square array A(n,k) begins:
  1,      1,        1,         1,          1,           1, ...
  0,      2,        6,        12,         20,          30, ...
  0,     16,      174,       690,       1876,        4140, ...
  0,    192,     7020,     52808,     229680,      738192, ...
  0,   2816,   325590,   4558410,   31497284,   146955276, ...
  0,  46592, 16290708, 420421056, 4600393936, 31113230148, ...
		

Crossrefs

Rows n=0-3 give: A000012, A002378, A215687, A215688.
Main diagonal gives: A215123.

Programs

  • Maple
    b:= proc(x, y, z) option remember; `if`(z>y, b(x, z, y), `if`(z>x, 0,
          `if`({x, y, z}={0}, 1, `if`(x>y and x>z, b(x-1, y, z), 0)+
          `if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0))))
        end:
    A:= (n, k)-> b(n*k, n, n):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b [x_, y_, z_] := b[x, y, z] = If[z > y, b[x, z, y], If[z > x, 0, If[Union[{x, y, z}] == {0}, 1, If[x > y && x > z, b[x-1, y, z], 0] + If[y > 0, b[x, y-1, z], 0] + If[z > 0, b[x, y, z-1], 0]]]]; a[n_, k_] := b[n*k, n, n]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)

A214722 Number A(n,k) of solid standard Young tableaux of shape [[{n}^k],[n]]; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 16, 5, 1, 4, 91, 192, 14, 1, 5, 456, 5471, 2816, 42, 1, 6, 2145, 143164, 464836, 46592, 132, 1, 7, 9724, 3636776, 75965484, 48767805, 835584, 429, 1, 8, 43043, 91442364, 12753712037, 55824699632, 5900575762, 15876096, 1430
Offset: 0

Views

Author

Alois P. Heinz, Jul 26 2012

Keywords

Examples

			Square array A(n,k) begins:
   1,     1,        1,           1,              1,                 1, ...
   1,     2,        3,           4,              5,                 6, ...
   2,    16,       91,         456,           2145,              9724, ...
   5,   192,     5471,      143164,        3636776,          91442364, ...
  14,  2816,   464836,    75965484,    12753712037,     2214110119572, ...
  42, 46592, 48767805, 55824699632, 70692556053053, 98002078234748974, ...
		

Crossrefs

Columns k=1-4 give: A000108, A006335, A213978, A215220.
Rows n=0-3 give: A000012, A000027, A214824, A211505.
A(n,n) gives A258583.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    A:= (n, k)-> b([[n$k], [n]]):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_List] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_, k_] := b[{Array[n&, k], {n}}]; Table[Table[a[n, 1+d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

A215204 Number A(n,k) of solid standard Young tableaux of cylindrical shape lambda X k, where lambda ranges over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 4, 5, 1, 1, 10, 26, 10, 7, 1, 1, 28, 276, 258, 26, 11, 1, 1, 84, 3740, 14318, 3346, 76, 15, 1, 1, 264, 58604, 1161678, 1214358, 54108, 232, 22, 1, 1, 858, 1010616, 118316062, 741215012, 150910592, 1054256, 764, 30
Offset: 0

Views

Author

Alois P. Heinz, Aug 05 2012

Keywords

Examples

			Square array A(n,k) begins:
:  1,  1,     1,         1,            1,                1, ...
:  1,  1,     1,         1,            1,                1, ...
:  2,  2,     4,        10,           28,               84, ...
:  3,  4,    26,       276,         3740,            58604, ...
:  5, 10,   258,     14318,      1161678,        118316062, ...
:  7, 26,  3346,   1214358,    741215012,     620383261034, ...
: 11, 76, 54108, 150910592, 840790914296, 7137345113624878, ...
		

Crossrefs

Columns k=0-5 give: A000041, A000085, A215266, A290202, A290214, A290274.
Rows n=0+1, 2-5 give: A000012, 2*A000108, 2*A005789 + A006335, 2*A005790 + 2*A213978 + A114714, 2*A005791 + 2*A215220 + 2*A213932 + A214638.
Main diagonal gives A290225.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    g:= proc(n, i, k, l) `if`(n=0 or i=1, b(map(x-> [k$x], [l[], 1$n])),
           add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i))
        end:
    A:= (n, k)-> g(n, n, k, []):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]];
    g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}]& /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
    A[n_, k_] := g[n, n, k, {}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Sep 24 2022, after Alois P. Heinz *)

A340591 Number A(n,k) of n*(k+1)-step k-dimensional nonnegative closed lattice walks starting at the origin and using steps that increment all components or decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 16, 5, 1, 1, 24, 288, 192, 14, 1, 1, 120, 9216, 24444, 2816, 42, 1, 1, 720, 460800, 7303104, 2738592, 46592, 132, 1, 1, 5040, 33177600, 4234233600, 8204167296, 361998432, 835584, 429, 1, 1, 40320, 3251404800, 4223111040000, 59027412643200, 11332298092032, 53414223552, 15876096, 1430, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 12 2021

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,     1,         1,              1,                   1, ...
  1,  1,     2,         6,             24,                 120, ...
  1,  2,    16,       288,           9216,              460800, ...
  1,  5,   192,     24444,        7303104,          4234233600, ...
  1, 14,  2816,   2738592,     8204167296,      59027412643200, ...
  1, 42, 46592, 361998432, 11332298092032, 1052109889288796160, ...
		

Crossrefs

Columns k=0-3 give: A000012, A000108, A006335, A340540.
Rows n=0-2 give: A000012, A000142, |A055546|.
Main diagonal gives A340590.
Cf. A335570.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, (k-> add(
         `if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..k)+
         `if`(add(i, i=l)+k x+1, l)), 0))(nops(l)))
        end:
    A:= (n, k)-> b(k*n+n, [0$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, Function[k, Sum[
      If[l[[i]]>0, b[n-1, Sort[ReplacePart[l, i -> l[[i]]-1]]], 0], {i, 1, k}]+
      If[Sum[i, {i, l}] + k < n, b[n - 1, Map[#+1&, l]], 0]][Length[l]]];
    A[n_, k_] := b[k*n + n, Table[0, {k}]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 26 2021, after Alois P. Heinz *)

A140136 Numerator coefficients for generators of lattice path enumeration square array A111910.

Original entry on oeis.org

1, 1, 1, 1, 7, 7, 1, 1, 20, 75, 75, 20, 1, 1, 42, 364, 1001, 1001, 364, 42, 1, 1, 75, 1212, 6720, 15288, 15288, 6720, 1212, 75, 1, 1, 121, 3223, 30723, 127908, 255816, 255816, 127908, 30723, 3223, 121, 1, 1, 182, 7371, 109538, 737737, 2510508
Offset: 0

Views

Author

Paul Barry, May 09 2008

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  7,    7,     1;
  1, 20,   75,    75,    20,     1;
  1, 42,  364,  1001,  1001,   364,   42,    1;
  1, 75, 1212,  6720, 15288, 15288, 6720, 1212, 75, 1;
  ...
		

Crossrefs

Row sums are A006335.
Cf. A111910.

Programs

  • Mathematica
    T[n_, k_] := ((k + n - 1)! (2 (k + n) - 3)! HypergeometricPFQ[{2 - 3 k, 1/2 - n, 1 - n, -n}, {1 - k - n, 3/2 - k - n, 2 - k - n}, 1])/(k! (2 k - 1)! n! (2 n - 1)!);
    Join[{{1}}, Table[T[n, k], {k, 2, 8}, {n, 1, 2 k - 2}]] // Flatten (* Peter Luschny, Sep 04 2019 *)

Formula

(Sum_{k=0..n} T(n,k) * x^k) / (1-x)^(3*n+1) generates row n of A111910.
Triangle T(q,n), where T(n,q) = Sum_{j = 0..n} (-1)^j*C(3*q+1,j)*K(n-j,q) with K(p,q) = A111910(p,q).

A214631 Number A(n,k) of solid standard Young tableaux of shape [[(n)^(k+1)],[n]^k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 16, 1, 1, 20, 936, 192, 1, 1, 70, 85800, 379366, 2816, 1, 1, 252, 9962680, 1825221320, 249664758, 46592, 1, 1, 924, 1340103744, 14336196893200, 89261675900020, 221005209058, 835584, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 26 2012

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,         1,              1,                    1, ...
  1,    2,         6,             20,                   70, ...
  1,   16,       936,          85800,              9962680, ...
  1,  192,    379366,     1825221320,       14336196893200, ...
  1, 2816, 249664758, 89261675900020, 70351928759681296000, ...
		

Crossrefs

Columns k=0-2 give: A000012, A006335, A214638.
Rows n=0-1 give: A000012, A000984.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    A:= (n, k)-> b([[n$(k+1)], [n]$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[l_] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]] ] < j, 0, l[[i+1, j]] ] && l[[i, j]] > If[Length[l[[i]] ] == j, 0, l[[i, j+1]] ], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]] ]}], {i, 1, m}]]]; a[n_, k_] := b[{Array[n&, k+1], Sequence @@ Array[{n}&, k]}]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)

A098272 a(n) = 2^(2n+1) * binomial(3n,n)/(2n+1).

Original entry on oeis.org

2, 8, 96, 1536, 28160, 559104, 11698176, 254017536, 5670567936, 129328742400, 3000426823680, 70587116421120, 1679973370822656, 40376795886780416, 978590323955466240, 23890230876435382272, 586939535850605641728
Offset: 0

Views

Author

Ralf Stephan, Sep 02 2004

Keywords

Crossrefs

Programs

  • Magma
    [2^(2*n+1)*Binomial(3*n, n)/(2*n+1): n in [0..20]]; // Vincenzo Librandi, Oct 03 2011
  • Mathematica
    Table[2^(2n+1) Binomial[3n,n]/(2n+1),{n,0,20}] (* Harvey P. Dale, Oct 02 2011 *)
  • PARI
    a(n)=2^(2*n+1)*binomial(3*n,n)/(2*n+1)
    
  • PARI
    a(n)=polcoeff(serreverse(Ser(x/(2+x^3))),3*n+1)
    

Formula

G.f. satisfies A(x) = Sum_{n>=0} a(n)*x^(3n+1) = x(2 + A(x)^3).
a(n) = 2n * A006335(n) = 2^(2n+1) * A001764(n).
G.f.: (2 sin(1/3*arcsin(3*sqrt(3)*sqrt(x))))/(sqrt(3)*sqrt(x)). - Harvey P. Dale, Oct 02 2011
E.g.f.: 2*2F2(1/3,2/3; 1,3/2; 27*x). - Ilya Gutkovskiy, Jan 25 2017

A340540 Number of walks of length 4n in the first octant using steps (1,1,1), (-1,0,0), (0,-1,0), and (0,0,-1) that start and end at the origin.

Original entry on oeis.org

1, 6, 288, 24444, 2738592, 361998432, 53414223552, 8525232846072, 1443209364298944, 255769050813120576, 47020653859202576640, 8907614785269428079168, 1730208409741026141405696, 343266632435192859791576064, 69350551439109880798294334208
Offset: 0

Views

Author

Daniel Carter, Jan 10 2021

Keywords

Comments

There are no such walks with length that is not a multiple of 4.
a(n) is also the number of arrangements of n copies each of "a", "b", "c", and "d" such that no prefix has more b's, c's, or d's than a's.
The analogous problem in dimensions 1 and 2 are given respectively by A000108 (the Catalan numbers) and A006335.
No closed form is known. In fact, it is not known whether this sequence is D-finite (see Bacher et al.).

Crossrefs

Column k=3 of A340591.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, `if`(add(i, i=l)+3 x+1, l)), 0) +add(`if`(l[i]>0,
          b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..3))
        end:
    a:= n-> b(4*n, [0$3]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Jan 12 2021
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, If[Total[l] + 3 < n,
      b[n-1, l+1]], 0] + Sum[If[l[[i]] > 0,
      b[n-1, Sort[ReplacePart[l, i -> l[[i]]-1]]], 0], {i, 1, 3}] /. Null -> 0;
    a[n_] := b[4n, {0, 0, 0}];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 10 2021, after Alois P. Heinz *)
  • Python
    import itertools as it
    i = 0
    while 1:
        counts = {(a,b,c):0 for a,b,c in it.product(range(i+1), repeat=3)}
        counts[0,0,0] = 1
        for _ in range(4*i):
            update = {(a,b,c):0 for a,b,c in it.product(range(i+1), repeat=3)}
            for x,y,z in counts:
                if counts[x,y,z] != 0:
                    for coord in [(x+1,y+1,z+1), (x-1,y,z), (x,y-1,z), (x,y,z-1)]:
                        if coord in update:
                            update[coord] += counts[x,y,z]
            counts = update
        print(i, counts[0,0,0])
        i += 1
Showing 1-10 of 11 results. Next