cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A214722 Number A(n,k) of solid standard Young tableaux of shape [[{n}^k],[n]]; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 16, 5, 1, 4, 91, 192, 14, 1, 5, 456, 5471, 2816, 42, 1, 6, 2145, 143164, 464836, 46592, 132, 1, 7, 9724, 3636776, 75965484, 48767805, 835584, 429, 1, 8, 43043, 91442364, 12753712037, 55824699632, 5900575762, 15876096, 1430
Offset: 0

Views

Author

Alois P. Heinz, Jul 26 2012

Keywords

Examples

			Square array A(n,k) begins:
   1,     1,        1,           1,              1,                 1, ...
   1,     2,        3,           4,              5,                 6, ...
   2,    16,       91,         456,           2145,              9724, ...
   5,   192,     5471,      143164,        3636776,          91442364, ...
  14,  2816,   464836,    75965484,    12753712037,     2214110119572, ...
  42, 46592, 48767805, 55824699632, 70692556053053, 98002078234748974, ...
		

Crossrefs

Columns k=1-4 give: A000108, A006335, A213978, A215220.
Rows n=0-3 give: A000012, A000027, A214824, A211505.
A(n,n) gives A258583.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    A:= (n, k)-> b([[n$k], [n]]):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_List] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_, k_] := b[{Array[n&, k], {n}}]; Table[Table[a[n, 1+d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

A214978 Array T(m,n) = Fibonacci(m*n)/Fibonacci(m), by antidiagonals; transpose of A028412.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 8, 4, 1, 5, 21, 17, 7, 1, 8, 55, 72, 48, 11, 1, 13, 144, 305, 329, 122, 18, 1, 21, 377, 1292, 2255, 1353, 323, 29, 1, 34, 987, 5473, 15456, 15005, 5796, 842, 47, 1, 55, 2584, 23184, 105937, 166408, 104005, 24447, 2208, 76, 1, 89
Offset: 1

Views

Author

Clark Kimberling, Oct 27 2012

Keywords

Comments

The main entry is the transpose, A028412. In the present format, the array can be compared directly with A214984 and A214986.

Examples

			Northwest corner:
  1  1   2    3      5       8
  1  3   8   21     55     144
  1  4  17   72    305    1292
  1  7  48  329   2255   15456
  1 11 122 1353  15005  166408
  1 18 323 5796 104005 1866294
		

Crossrefs

Programs

  • Mathematica
    F[n_] := Fibonacci[n]; t[m_, n_] := F[m*n]/F[m]
    TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]]
    u = Table[t[k, n + 1 - k], {n, 1, 12}, {k, 1, n}];
    v[n_] := Sum[F[m*(n + 1 - m)]/F[m], {m, 1, n}];
    Flatten[u]                           (* A213978 *)
    Flatten[Table[t[n, n], {n, 1, 20}]]  (* A051294 *)
    Table[(t[n, 5] - 5)/50, {n, 1, 20}]  (* A214982 *)
    Table[v[n], {n, 1, 30}]              (* A214983 *)

Formula

T(m,n) = Fibonacci(m*n)/Fibonacci(m).

A213932 Number of solid standard Young tableaux of shape [[n,n,n],[n,n]].

Original entry on oeis.org

1, 5, 707, 268326, 168146839, 143163177336, 149998192424502, 182598353781240533, 249032962712552804432, 371285830572997665257695, 594729699502746726969433566, 1010574132470951359396337494800, 1804193873947216124589237862262262
Offset: 0

Views

Author

Alois P. Heinz, Jul 23 2012

Keywords

Comments

Also the number of solid standard Young tableaux of shape [[n,n],[n,n],[n]].

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    a:= n-> b([[n, n, n], [n, n]]):
    seq(a(n), n=0..10);
  • Mathematica
    b[l_] := b[l] = With[{ m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]]; a[n_] := b[{{n, n, n}, {n, n}}]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Dec 18 2013, translated from Maple *)

A214986 Power ceiling array for the golden ratio, by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 8, 5, 1, 1, 12, 21, 22, 7, 1, 1, 20, 55, 94, 48, 12, 1, 1, 33, 144, 399, 329, 134, 18, 1, 1, 54, 377, 1691, 2255, 1487, 323, 30, 1, 1, 88, 987, 7164, 15456, 16492, 5796, 872, 47, 1, 1, 143, 2584, 30348, 105937, 182900
Offset: 1

Views

Author

Clark Kimberling, Oct 28 2012

Keywords

Comments

row 0: A000012 ... row 6: A049660
row 1: A000071 ... row 8: A049668
row 2: A001906 ... col 0: A000012
row 3: A049652 ... col 1: A169986
row 4: A004187
For x>1, define c(x,0) = 1 and c(x,n) = ceiling(x*c(x,n-1)) for n>0. Row m of A214986 is the sequence c(r^m,n), where r = golden ratio = (1 + sqrt(5))/2. The name of the array corresponds to the power ceiling function f(x) = limit of c(x,n)/x^n as n increases without bound; f(x) generalizes the case for x = 3/2 as described under "Power Ceilings" at MathWorld. For a graph of f(x), see the Mathematica program at A083286.
The term "power ceiling sequence" extends to sequences generated by recurrences P(n) = ceiling(x*P(n-1)) + g(n), and "power ceiling functions" f(x) to the limit of P(n)/x^n in case x>1 and g(n)/x^n -> 0.
Suppose that h is a nonnegative integer and g(n) is a constant. If x is a positive integer power of the golden ratio r, then f(x), in many cases, lies in the field Q(sqrt(5)). Examples matching rows of A214986, using g(n) = 0, follow:
...
x ... P ........ f(x)
r ... A000071 .. (5 + 2*sqrt(5))/2 = 1.8944... (A010532)
r^2 . A001906 .. (5 + 3*sqrt(5))/10 = 1.7082...(A176015)
r^3 . A049652 .. (25 + 11*sqrt(5))/40 = 1.2399...
r^4 . A004187 .. (15 + 7*sqrt(5))/10 = 1.0219...
...
If k is odd, then f(r^k) = r^k((b(k) + c(k))/d(k)), where
b(k) = L(j)^2 + L(j-1)^2, where j=[(k+1)/2], L=A000032 (Lucas numbers); c(k) = (L(k)+2)*sqrt(5); d(k) = 10*F(k)*L(k), where F=A000045 (Fibonacci numbers). If k is even, then f(r^k) = r^k/(F(k)*sqrt(5)).

Examples

			Northwest corner:
1...1....1.....1......1.......1
1...2....4.....7......12......20
1...3....8.....21.....55......144
1...5....22....94.....399.....1691
1...7....48....329....2255....15456
1...19...134...1487...16492...182900
		

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio;
    s[x_, 0] := 1; s[x_, n_] := Ceiling[x*s[x, n - 1]];
    t = TableForm[Table[s[r^m, n], {m, 0, 10}, {n, 0, 10}]  ]
    u = Flatten[Table[s[r^m, n - m], {n, 0, 10}, {m, 0, n}]]

Formula

The odd-numbered rows of A214986 are even-numbered rows of A213978; the even-numbered rows of A214986 are odd-numbered rows of A214984.

A215204 Number A(n,k) of solid standard Young tableaux of cylindrical shape lambda X k, where lambda ranges over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 4, 5, 1, 1, 10, 26, 10, 7, 1, 1, 28, 276, 258, 26, 11, 1, 1, 84, 3740, 14318, 3346, 76, 15, 1, 1, 264, 58604, 1161678, 1214358, 54108, 232, 22, 1, 1, 858, 1010616, 118316062, 741215012, 150910592, 1054256, 764, 30
Offset: 0

Views

Author

Alois P. Heinz, Aug 05 2012

Keywords

Examples

			Square array A(n,k) begins:
:  1,  1,     1,         1,            1,                1, ...
:  1,  1,     1,         1,            1,                1, ...
:  2,  2,     4,        10,           28,               84, ...
:  3,  4,    26,       276,         3740,            58604, ...
:  5, 10,   258,     14318,      1161678,        118316062, ...
:  7, 26,  3346,   1214358,    741215012,     620383261034, ...
: 11, 76, 54108, 150910592, 840790914296, 7137345113624878, ...
		

Crossrefs

Columns k=0-5 give: A000041, A000085, A215266, A290202, A290214, A290274.
Rows n=0+1, 2-5 give: A000012, 2*A000108, 2*A005789 + A006335, 2*A005790 + 2*A213978 + A114714, 2*A005791 + 2*A215220 + 2*A213932 + A214638.
Main diagonal gives A290225.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    g:= proc(n, i, k, l) `if`(n=0 or i=1, b(map(x-> [k$x], [l[], 1$n])),
           add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i))
        end:
    A:= (n, k)-> g(n, n, k, []):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]];
    g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}]& /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
    A[n_, k_] := g[n, n, k, {}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Sep 24 2022, after Alois P. Heinz *)

A214637 Number of solid standard Young tableaux of shape [[n,n,n],[n,n],[n]].

Original entry on oeis.org

1, 16, 17086, 61189172, 404233159860, 3880365678824980, 47959061464818182058, 711513280222442751394224, 12121127323153614807021655742, 230127245538294682127207785787376, 4767460278053986542112719904243778834, 106115342273795146740243750912097789131600
Offset: 0

Views

Author

Alois P. Heinz, Jul 23 2012

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    a:= n-> b([[n, n, n], [n, n], [n]]):
    seq(a(n), n=0..10);
  • Mathematica
    b[l_] := b[l] = With[{m := Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_] := b[{{n, n, n}, {n, n}, {n}}]; Table[a[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)

A214638 Number of solid standard Young tableaux of shape [[n,n,n],[n],[n]].

Original entry on oeis.org

1, 6, 936, 379366, 249664758, 221005209058, 239143562020194, 299233941746052998, 417999868371999142276, 636568066798406010872120, 1039267652960081699025215774, 1796704965351078502372895796786, 3258764657213579008313421745034602
Offset: 0

Views

Author

Alois P. Heinz, Jul 23 2012

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    a:= n-> b([[n, n, n], [n], [n]]):
    seq(a(n), n=0..10);
  • Mathematica
    b[l_] := b[l] = With[{m := Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_] := b[{{n, n, n}, {n}, {n}}]; Table[a[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)

A214631 Number A(n,k) of solid standard Young tableaux of shape [[(n)^(k+1)],[n]^k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 16, 1, 1, 20, 936, 192, 1, 1, 70, 85800, 379366, 2816, 1, 1, 252, 9962680, 1825221320, 249664758, 46592, 1, 1, 924, 1340103744, 14336196893200, 89261675900020, 221005209058, 835584, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 26 2012

Keywords

Examples

			Square array A(n,k) begins:
  1,    1,         1,              1,                    1, ...
  1,    2,         6,             20,                   70, ...
  1,   16,       936,          85800,              9962680, ...
  1,  192,    379366,     1825221320,       14336196893200, ...
  1, 2816, 249664758, 89261675900020, 70351928759681296000, ...
		

Crossrefs

Columns k=0-2 give: A000012, A006335, A214638.
Rows n=0-1 give: A000012, A000984.

Programs

  • Maple
    b:= proc(l) option remember; local m; m:= nops(l);
          `if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
          `if`(i=m or nops(l[i+1])
          `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
           j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
        end:
    A:= (n, k)-> b([[n$(k+1)], [n]$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[l_] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]] ] < j, 0, l[[i+1, j]] ] && l[[i, j]] > If[Length[l[[i]] ] == j, 0, l[[i, j+1]] ], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]] ]}], {i, 1, m}]]]; a[n_, k_] := b[{Array[n&, k+1], Sequence @@ Array[{n}&, k]}]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)

A214987 Power round array for the golden ratio, by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 8, 4, 1, 1, 8, 21, 17, 7, 1, 1, 13, 55, 72, 48, 11, 1, 1, 21, 144, 305, 329, 122, 18, 1, 1, 34, 377, 1292, 2255, 1353, 323, 29, 1, 1, 55, 987, 5473, 15456, 15005, 5796, 842, 47, 1, 1, 89, 2584, 23184, 105937, 166408, 104005
Offset: 1

Views

Author

Clark Kimberling, Oct 28 2012

Keywords

Comments

The term "power round sequence" (after "power ceiling sequence" at A214986) extends to sequences generated by recurrences P(n) = round(x*P(n-1)) + g(n), and "power round functions" f(x) to the limit of P(n)/x^n in case x>1 and g(n)/x^n -> 0. Suppose that h is a nonnegative integer and g(n) is a constant. If x is a positive integer power of the golden ratio r, then f(x), in many cases, lies in the field Q(sqrt(5)). Examples matching rows of A214987, using g(n) = 0, follow:
...
x ... P . .. . . f(x)
r ... A000045 .. 1/2 + 3*sqrt(5)/10 = 1.1708... (A176015)
r^2 . A001906 .. 1/2 + 3*sqrt(5)/10 = 1.1708... (A176015)
r^3 . A001076 .. 1/2 + sqrt(5)/5 = 0.9472...
r^4 . A004187 .. 1/2 + 7*sqrt(5)/30 = 1.0217...
In general, f(r^k) = 1/2 + sqrt(5)*L(k)/(10*F(k)) for k>1, where L = A000032 (Lucas numbers) and F = A000045 (Fibonacci numbers).
(row 2 of A214987) = (row 1 of A213978 except for its initial 1)
(row n of A214987) = (row n-1 of A213978 for n>2).

Examples

			1...1...1....1.....1......1
1...2...3....5.....8......13
1...3...8....21....5......144
1...4...17...72....305....1292
1...7...48...329...2255...15456
		

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio;
    s[x_, 0] := 1; s[x_, n_] := Round[x*s[x, n - 1]];
    t = TableForm[Table[s[r^m, n], {m, 0, 10}, {n, 0, 10}]  ]
    u = Flatten[Table[s[r^m, n - m], {n, 0, 10}, {m, 0, n}]]
Showing 1-9 of 9 results.