A214722
Number A(n,k) of solid standard Young tableaux of shape [[{n}^k],[n]]; square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 16, 5, 1, 4, 91, 192, 14, 1, 5, 456, 5471, 2816, 42, 1, 6, 2145, 143164, 464836, 46592, 132, 1, 7, 9724, 3636776, 75965484, 48767805, 835584, 429, 1, 8, 43043, 91442364, 12753712037, 55824699632, 5900575762, 15876096, 1430
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
2, 16, 91, 456, 2145, 9724, ...
5, 192, 5471, 143164, 3636776, 91442364, ...
14, 2816, 464836, 75965484, 12753712037, 2214110119572, ...
42, 46592, 48767805, 55824699632, 70692556053053, 98002078234748974, ...
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
A:= (n, k)-> b([[n$k], [n]]):
seq(seq(A(n, 1+d-n), n=0..d), d=0..10);
-
b[l_List] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_, k_] := b[{Array[n&, k], {n}}]; Table[Table[a[n, 1+d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
A214978
Array T(m,n) = Fibonacci(m*n)/Fibonacci(m), by antidiagonals; transpose of A028412.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 8, 4, 1, 5, 21, 17, 7, 1, 8, 55, 72, 48, 11, 1, 13, 144, 305, 329, 122, 18, 1, 21, 377, 1292, 2255, 1353, 323, 29, 1, 34, 987, 5473, 15456, 15005, 5796, 842, 47, 1, 55, 2584, 23184, 105937, 166408, 104005, 24447, 2208, 76, 1, 89
Offset: 1
Northwest corner:
1 1 2 3 5 8
1 3 8 21 55 144
1 4 17 72 305 1292
1 7 48 329 2255 15456
1 11 122 1353 15005 166408
1 18 323 5796 104005 1866294
-
F[n_] := Fibonacci[n]; t[m_, n_] := F[m*n]/F[m]
TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]]
u = Table[t[k, n + 1 - k], {n, 1, 12}, {k, 1, n}];
v[n_] := Sum[F[m*(n + 1 - m)]/F[m], {m, 1, n}];
Flatten[u] (* A213978 *)
Flatten[Table[t[n, n], {n, 1, 20}]] (* A051294 *)
Table[(t[n, 5] - 5)/50, {n, 1, 20}] (* A214982 *)
Table[v[n], {n, 1, 30}] (* A214983 *)
A213932
Number of solid standard Young tableaux of shape [[n,n,n],[n,n]].
Original entry on oeis.org
1, 5, 707, 268326, 168146839, 143163177336, 149998192424502, 182598353781240533, 249032962712552804432, 371285830572997665257695, 594729699502746726969433566, 1010574132470951359396337494800, 1804193873947216124589237862262262
Offset: 0
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
a:= n-> b([[n, n, n], [n, n]]):
seq(a(n), n=0..10);
-
b[l_] := b[l] = With[{ m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]]; a[n_] := b[{{n, n, n}, {n, n}}]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A214986
Power ceiling array for the golden ratio, by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 8, 5, 1, 1, 12, 21, 22, 7, 1, 1, 20, 55, 94, 48, 12, 1, 1, 33, 144, 399, 329, 134, 18, 1, 1, 54, 377, 1691, 2255, 1487, 323, 30, 1, 1, 88, 987, 7164, 15456, 16492, 5796, 872, 47, 1, 1, 143, 2584, 30348, 105937, 182900
Offset: 1
Northwest corner:
1...1....1.....1......1.......1
1...2....4.....7......12......20
1...3....8.....21.....55......144
1...5....22....94.....399.....1691
1...7....48....329....2255....15456
1...19...134...1487...16492...182900
-
r = GoldenRatio;
s[x_, 0] := 1; s[x_, n_] := Ceiling[x*s[x, n - 1]];
t = TableForm[Table[s[r^m, n], {m, 0, 10}, {n, 0, 10}] ]
u = Flatten[Table[s[r^m, n - m], {n, 0, 10}, {m, 0, n}]]
A215204
Number A(n,k) of solid standard Young tableaux of cylindrical shape lambda X k, where lambda ranges over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 4, 5, 1, 1, 10, 26, 10, 7, 1, 1, 28, 276, 258, 26, 11, 1, 1, 84, 3740, 14318, 3346, 76, 15, 1, 1, 264, 58604, 1161678, 1214358, 54108, 232, 22, 1, 1, 858, 1010616, 118316062, 741215012, 150910592, 1054256, 764, 30
Offset: 0
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, ...
: 2, 2, 4, 10, 28, 84, ...
: 3, 4, 26, 276, 3740, 58604, ...
: 5, 10, 258, 14318, 1161678, 118316062, ...
: 7, 26, 3346, 1214358, 741215012, 620383261034, ...
: 11, 76, 54108, 150910592, 840790914296, 7137345113624878, ...
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
g:= proc(n, i, k, l) `if`(n=0 or i=1, b(map(x-> [k$x], [l[], 1$n])),
add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i))
end:
A:= (n, k)-> g(n, n, k, []):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]];
g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}]& /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
A[n_, k_] := g[n, n, k, {}];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Sep 24 2022, after Alois P. Heinz *)
A214637
Number of solid standard Young tableaux of shape [[n,n,n],[n,n],[n]].
Original entry on oeis.org
1, 16, 17086, 61189172, 404233159860, 3880365678824980, 47959061464818182058, 711513280222442751394224, 12121127323153614807021655742, 230127245538294682127207785787376, 4767460278053986542112719904243778834, 106115342273795146740243750912097789131600
Offset: 0
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
a:= n-> b([[n, n, n], [n, n], [n]]):
seq(a(n), n=0..10);
-
b[l_] := b[l] = With[{m := Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_] := b[{{n, n, n}, {n, n}, {n}}]; Table[a[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A214638
Number of solid standard Young tableaux of shape [[n,n,n],[n],[n]].
Original entry on oeis.org
1, 6, 936, 379366, 249664758, 221005209058, 239143562020194, 299233941746052998, 417999868371999142276, 636568066798406010872120, 1039267652960081699025215774, 1796704965351078502372895796786, 3258764657213579008313421745034602
Offset: 0
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
a:= n-> b([[n, n, n], [n], [n]]):
seq(a(n), n=0..10);
-
b[l_] := b[l] = With[{m := Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]]] < j, 0, l[[i+1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j+1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]] ]; a[n_] := b[{{n, n, n}, {n}, {n}}]; Table[a[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A214631
Number A(n,k) of solid standard Young tableaux of shape [[(n)^(k+1)],[n]^k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 16, 1, 1, 20, 936, 192, 1, 1, 70, 85800, 379366, 2816, 1, 1, 252, 9962680, 1825221320, 249664758, 46592, 1, 1, 924, 1340103744, 14336196893200, 89261675900020, 221005209058, 835584, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 2, 6, 20, 70, ...
1, 16, 936, 85800, 9962680, ...
1, 192, 379366, 1825221320, 14336196893200, ...
1, 2816, 249664758, 89261675900020, 70351928759681296000, ...
-
b:= proc(l) option remember; local m; m:= nops(l);
`if`({map(x-> x[], l)[]}={0}, 1, add(add(`if`(l[i][j]>
`if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
end:
A:= (n, k)-> b([[n$(k+1)], [n]$k]):
seq(seq(A(n, d-n), n=0..d), d=0..8);
-
b[l_] := b[l] = With[{m = Length[l]}, If[Union[Flatten[l]] == {0}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i+1]] ] < j, 0, l[[i+1, j]] ] && l[[i, j]] > If[Length[l[[i]] ] == j, 0, l[[i, j+1]] ], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]]-1]]], 0], {j, 1, Length[l[[i]] ]}], {i, 1, m}]]]; a[n_, k_] := b[{Array[n&, k+1], Sequence @@ Array[{n}&, k]}]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A214987
Power round array for the golden ratio, by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 8, 4, 1, 1, 8, 21, 17, 7, 1, 1, 13, 55, 72, 48, 11, 1, 1, 21, 144, 305, 329, 122, 18, 1, 1, 34, 377, 1292, 2255, 1353, 323, 29, 1, 1, 55, 987, 5473, 15456, 15005, 5796, 842, 47, 1, 1, 89, 2584, 23184, 105937, 166408, 104005
Offset: 1
1...1...1....1.....1......1
1...2...3....5.....8......13
1...3...8....21....5......144
1...4...17...72....305....1292
1...7...48...329...2255...15456
-
r = GoldenRatio;
s[x_, 0] := 1; s[x_, n_] := Round[x*s[x, n - 1]];
t = TableForm[Table[s[r^m, n], {m, 0, 10}, {n, 0, 10}] ]
u = Flatten[Table[s[r^m, n - m], {n, 0, 10}, {m, 0, n}]]
Showing 1-9 of 9 results.
Comments