A213934 Triangle with entry a(n,m) giving the number of necklaces of n beads (C_N symmetry) with n colors available for each bead, but only m distinct fixed colors, say c[1],...,c[m], are present, with m from {1,...,n} and n>=1.
1, 1, 1, 1, 1, 2, 1, 3, 3, 6, 1, 3, 10, 12, 24, 1, 8, 31, 50, 60, 120, 1, 9, 71, 180, 300, 360, 720, 1, 22, 187, 815, 1260, 2100, 2520, 5040, 1, 29, 574, 2324, 6496, 10080, 16800, 20160, 40320, 1, 66, 1373, 9570, 32268, 58464, 90720, 151200, 181440, 362880
Offset: 1
Examples
n\m 1 2 3 4 5 6 7 8 9 10 ... 1 1 2 1 1 3 1 1 2 4 1 3 3 6 5 1 3 10 12 24 6 1 8 31 50 60 120 7 1 9 71 180 300 360 720 8 1 22 187 815 1260 2100 2520 5040 9 1 29 574 2324 6496 10080 16800 20160 40320 10 1 66 1373 9570 32268 58464 90720 151200 181440 362880 ... a(5,3) = 4 + 6 = 10, from A212359(5,4) + A212359(5,5), because k(5,3,1) = 4 and p(5,3) = 2. a(2,1) = 1 because the partition [2] of n=2 with part number m=1 corresponds to the representative color multinomial (here monomial) c[1]^2=c[1]*c[1], and there is one such representative necklace. There is another necklace color monomial in this class of n=2 colors where only m=1 color is active: c[2]*c[2]. See the triangle entry A213935(2,1)=2. a(3,1) = 1 from the color monomial representative c[1]^3. This class has 2 other members: c[2]^3 and c[3]^3. See A213935(3,1)=3. In general a(n,1)=1 and A213935(n,1)=n from the partition [n] providing the color signature and a representative c[1]^n. a(3,2)=1 from the representative color multinomial c[1]^2*c[2] (from the m=2 partition [2,1] of n=3) leading to just one representative necklace cyclic(112) (when one uses j for color c[j]). The whole class consists of A213935(3,2)=6 necklaces: cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332). a(3,3)=2. The representative color multinomial is c[1]*c[2]*c[3] (from the m=3 partition [1,1,1]). There are the two non-equivalent representative necklaces cyclic(1,2,3) and cyclic(1,3,2) which constitute already the whole class (A213935(3,3)=2). a(4,2) = 3 from two representative color multinomials c[1]^3*c[2] and c[1]^2*c[2]^2 (from the two m=2 partitions of n=4: [3,1] and [2,2]). The first one has one representative necklace, namely cyclic(1112), the second one originates from two representative necklaces: cyclic(1122) and cyclic(1212). Together these are the 3 necklaces counted by a(4,2). The class with the first representative consists of 4*3=12 necklaces, when all 4 colors are used. The class of the second representative consists of 2*6=12 necklaces. Together they sum up to the 24 necklaces counted by A213935(4,2).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; a226874[n_, k_] := If[n k == 0, If[n == k, 1, 0], n! b[n, 1, k]]; T[n_, k_] := (1/n) Sum[EulerPhi[n/d] a226874[d, k], {d, Divisors[n]}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 06 2018, after Alois P. Heinz and Andrew Howroyd *)
-
PARI
\\ here U is A226874 as vector of polynomials. U(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))} C(n)={my(t=U(n)); vector(n, n, vector(n, k, (1/n)*sumdiv(n, d, eulerphi(n/d) * polcoeff(t[d+1], k))))} { my(t=C(10)); for(n=1, #t, print(t[n])) } \\ Andrew Howroyd, Dec 20 2017
Formula
a(n,m) = Sum_{j=1..p(n,m)}A212359(n,k(n,m,1)+j-1), with k(n,m,1) the position where in the list of partitions of n in A-St order the first with m parts appears, and p(n,m) the number of partitions of n with m parts shown in the array A008284. E.g., n=5, m=3: k(5,3,1)=4, p(5,3)=2.
T(n,k) = (1/n)*Sum_{d|n} phi(n/d)*A226874(d, k). - Andrew Howroyd, Dec 20 2017
Comments