cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A213939 Partition array for the number of representative bracelets (dihedral symmetry D_n) with n beads, each available in n colors. Only the color type (signature) matters.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 4, 6, 12, 1, 1, 3, 3, 3, 6, 11, 10, 16, 30, 60, 1, 1, 3, 4, 3, 9, 10, 18, 15, 30, 48, 60, 90, 180, 360, 1, 1, 4, 5, 8, 4, 12, 19, 33, 38, 21, 54, 70, 108, 171, 105, 210, 318, 420, 630, 1260, 2520, 1, 1, 4, 7, 10, 4, 16, 28, 38, 48, 76, 94
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2012

Keywords

Comments

The row lengths sequence is A000041(n), n >= 1.
The partitions are ordered like in Abramowitz-Stegun (A-St order). For the reference see A036036, where also a link to a work by C. F. Hindenburg from 1779 is found where this order has been used.
A bracelet with n beads (n-bracelet) has the dihedral D_n symmetry group of degree n (order 2n). In addition to cyclic C_n operations, also a turnover (in 3-space) or a reflection (in 2-space) is allowed. In the Harary-Palmer reference, p. 44, the term necklace is used instead of bracelet.
a(n,k) gives the number of representative n-bracelets, with up to n colors for each bead, belonging to the k-th partition of n in A-St order in the following way. Write this partition with nonincreasing parts (this is the reverse of the partition as given by A-St), e.g., [3,1^2], not [1^2,3], which is written as [3,1,1], a partition of n=5. In general a (reversed) partition of n is written as [p[1],p[2],...,p[m]], with p[1] >= p[2] >= ... >= p[m] >= 1, with m the number of parts. To each such partition of n corresponds an n-multiset obtained by 'exponentiation'. For more details see the W. Lang link in A213938 with more details as well as a list of multiset signatures and corresponding multiset representatives. For the given example the 5-multiset is {1^3,2^1,3^1}={1,1,1,2,3}. In general, {1^p[1],2^p[2],...,m^p[m]}. We will also use a list notation with square brackets for these multisets. Such an n-multiset representative (of a repetition class defined by the exponents, also called signature) encodes the representative n-bracelet color monomial by c[1]^p[1]*c[2]^p[2]*...*c[m]^p[m]. For the example one has c[1]^3*c[2]*c[3]. The number of 5-bracelets with this color assignment is a(5,4) because [3,1,1] is the 4th partition of 5 in A-St order. The a(5,4)=2 non-equivalent 5-bracelets with this color assignment are cyclic(c[1]c[1]c[1]c[2]c[3]) and cyclic(c[1]c[1]c[2]c[1]c[3]). For the necklace case c[1]c[1]c[1]c[3]c[2] and c[1]c[1]c[3]c[1]c[2] (both taken cyclically) also have to be counted, but due to a turn over (or a reflection) they become equivalent to the two given bracelets, respectively.
Such a set of a(n,k) n-bracelets for the given color signature stands for other sets of the same order when different colors from the repertoire {c[1],...,c[n]} are chosen. In the example, the partition [3,1,1] with the representative multiset [1^3,2,3] stands for all-together 5*binomial(4,2) = 30 such sets, each leading to 2 possible non-equivalent 5-bracelet arrangements. Thus one has all-together 30*2=60 5-bracelets with color signature determined from the partition [3,1,1]. See the partition array A213941 for these total bracelet numbers.
a(n,k) is computed from the cycle index Z(D_n) for the dihedral group (see A212355 and the link given there) after the variables x_j have been replaced by the j-th power sum sum(c[i]^j,i=1..n), abbreviated as Z(D_n,c_n) with c_n:=sum(c[i],i=1..n), n >= 1. The coefficient of the representative color multinomial determined by the k-th partition of n in A-St order, as explained above, is a(n,k). See the Harary-Palmer reference, p. 36, Theorem (PET) with A = D_n and p. 37 eq. (2.2.11) for the cycle index polynomial Z(D_n). See the W. Lang link for more details.
The row sums are given by A213943.

Examples

			n\k 1 2 3 4 5 6  7  8  9 10 11 12 13  14  15 ...
1   1
2   1 1
3   1 1 1
4   1 1 2 2 3
5   1 1 2 2 4 6 12
6   1 1 3 3 3 6 11 10 16 30 60
7   1 1 3 4 3 9 10 18 15 30 48 60 90 180 360
...
Row n = 8 is 1 1 4 5 8 4 12 19 33 38 21 54 70 108 171 105 210 318 420 630 1260 2520.
See the link for the rows n=1 to n=15, and the corresponding color polynomials for n=1 to n=10.
a(4,5) = 3 because the partition in question is [1^4]=[1,1,1,1], the corresponding representative color multinomial is c[1]*c[2]*c[3]*c[4] (all four colors are involved), and there are the 3 D_4 non-equivalent 4-bracelets (we use here j for color c[j]): 1234, 1324 and 1423 (all taken as cyclically). For this partition there is only one color choice. The necklace solutions 1243, 1342, 1432, taken cyclically, become equivalent to the given bracelets, respectively (for necklaces see A212359).
a(4,4) = 2 because the partition is [2,1^2]=[2,1,1], the color representative multinomial is c[1]^2*c[2]*c[3], and the bracelet arrangements are 1123 and 1213 (all taken cyclically). The necklace cyclic(1132) becomes equivalent to the first bracelet under reflection. In total, there are 4*binomial(3,2)=12 color multinomials of this signature (color type) in Z(D_4,c_4), each with a coefficient 2.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973

Crossrefs

Cf. A212355 (Z(D_n)), A213943(row sums), A213940 (triangle with entries for fixed m summed).

Formula

a(n,k) is the number of representative bracelet arrangements with n beads (respecting the dihedral D_n symmetry) with color assignment given by the multiset representative obtained uniquely from the k-th partition of n in A-St order. See the comment for more details and the A-St reference.

A213941 Partition array a(n,k) with the total number of bracelets (D_n symmetry) with n beads, each available in n colors, with color signature given by the k-th partition of n in Abramowitz-Stegun(A-St) order.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 12, 12, 24, 3, 5, 20, 40, 60, 120, 120, 12, 6, 30, 90, 45, 180, 720, 220, 600, 1440, 900, 60, 7, 42, 126, 168, 315, 1890, 1050, 1890, 2100, 12600, 6720, 6300, 18900, 7560, 360, 8, 56, 224, 280, 224, 672, 4032, 6384, 5544, 6384, 5880, 45360
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2012

Keywords

Comments

This array is obtained by multiplying the entry of the array A213939(n,k) (number of bracelets (dihedral D_n symmetry) with n beads, each available in n colors, with color representative given by the n-multiset representative obtained from the k-th partition of n in A-St order after 'exponentiation') with the entry of the array A035206(n,k) (number of members in the equivalence class represented by the color multiset considered for A213939(n,k)): a(n,k)=A213939(n,k)*A035206(n,k), k=1..p(n)=A000041(n), n>=1. The row sums then give the total number of bracelets with n beads from n colors, given by A081721(n).
See A212359 for references, the 'exponentiation', and a link. For multiset signatures and representative multisets defining color multinomials see also a link in A213938.
The corresponding triangle with the summed row entries related to partitions of n with fixed number of parts is A214306.

Examples

			n\k 1   2    3    4    5     6     7     8     9    10   11
1   1
2   2   1
3   3   6    1
4   4  12   12   24    3
5   5  20   40   60  120   120    12
6   6  30   90   45  180   720   220   600  1440   900   60
...
Row m=7 is: 7 42 126 168 315 1890 1050 1890 2100 12600 6720 6300 18900 7560 360.
For the rows n=1 to n=15 see the link.
a(3,1) = 3 because the 3 bracelets with 3 beads coming in 3 colors have the color multinomials (here monomials) c[1]^3=c[1]*c[1]*c[1], c[2]^3 and c[3]^3. The partition of 3 is [3], the color representative is c[1]^3, and the equivalence class with color signature from the partition [3] has the three given members. There is no difference between necklace and bracelet numbers in this case.
a(3,2) = 6 from the color signature 2,1 with the representative multinomial c[1]^2 c[2] with coefficient A213939(3,2) = 1, the only 3-bracelet cyclic(112) (taking j for the color c[j]), and A035206(3,2) = 6 members of the whole color equivalence class: cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332). There is no difference between necklaces and bracelets numbers in this case.
a(3,3) = 1, color signature 1^3 = 1,1,1 with representative multinomial c[1]*c[2]*c[3] with coefficient A213939(3,3)=1 from the bracelet cyclic(1,2,3). The necklace (1,3,2) becomes equivalent to this one under D_3 operation. There are no other members in this class (A035206(3,3)=1).
The sum of row No. 3 is 10 = A081721(3). The bracelets are 111, 222, 333, 112, 113, 221, 223, 331, 332 and 123, all taken cyclically.
		

Crossrefs

Formula

a(n,k) = A213939(n,k)*A035206(n,k), k=1, 2, ..., p(n) = A000041(n), n >= 1.

A214306 Triangle with entry a(n,m) giving the total number of bracelets of n beads (D_n symmetry) with n colors available for each bead, but only m distinct colors present, with m from {1, 2, ..., n} and n >= 1.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 24, 24, 3, 5, 60, 180, 120, 12, 6, 165, 1120, 2040, 900, 60, 7, 336, 5145, 21420, 25200, 7560, 360, 8, 784, 23016, 183330, 442680, 335160, 70560, 2520, 9, 1584, 91056, 1320480, 5846400, 8890560, 4656960, 725760, 20160, 10
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2012

Keywords

Comments

This triangle is obtained from the array A213941 by summing in row n, for n >= 1, all entries related to partitions of n with the same number of parts m.
a(n,m) is the total number of necklaces of n beads (dihedral D_n symmetry) corresponding to all the color multinomials obtained from all p(n,m) = A008284(n,m) partitions of n with m parts, written in nonincreasing form, by 'exponentiation'. Therefore only m from the available n colors are present, and a(n,m) gives the number of bracelets with n beads with only m of the n available colors present, for m from 1,2,...,n, and n >= 1. All of the possible color assignments are counted.
See the comments on A212359 for the Abramowitz-Stegun (A-St) order of partitions, and the 'exponentiation' to obtain multisets, used to encode color multinomials, from partitions. See a link in A213938 for representative multisets for given signature used to define color multinomials.
The row sums of this triangle coincide with the ones of array A213941, and they are given by A081721.

Examples

			n\m 1    2     3       4       5       8       7      8     9
1   1
2   2    1
3   3    6     1
4   4   24    24       3
5   5   60   180     120      12
6   6  165  1120    2040     900     60
7   7  336  5145   21420   25200   7560      360
8   8  784 23016  183330  442680  33516    70560   2520
9   9 1584 91056 1320480 5846400 8890560 4656960 725760 20160
...
Row n=10:  10, 3420, 357480, 8691480, 64420272, 172609920, 177811200, 68040000, 8164800, 181440;
Row n=11:  11, 6820, 1327095, 52727400, 622175400, 2714009760, 4837417200, 3592512000, 1047816000, 99792000, 1814400.
a(2,2) = 1 from the color monomial c[1]^1*c[2]^1 = c[1]*c[2] (from the m=2 partition [1,1] of n=2). The bracelet in question is cyclic(12) (we use j for color c[j] in these examples). The same holds for the necklace case.
a(5,3) = 60 + 120 = 180, from A213941(5,4) + A213941(5,5), because k(5,3,1) = A214314(5,3) = 4 and p(5,3)=2.
a(3,1) = 3 from the color monomials c[1]^3, c[2]^3 and c[3]^3. The three bracelets are cyclic(111), cyclic(222) and cyclic(333). The same holds for the necklace case.
In general a(n,1)=n from the partition [n] providing the color signature (exponent), and the n color choices.
a(3,2) = 6 from the color signature c[.]^2 c[.]^1, (from the m=2 partition [2,1] of n=3), and there are 6 choices for the color indices. The 6 bracelets are cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332). The same holds for the necklace case.
a(3,3) = 1. The color multinomial is c[1]*c[2]*c[3] (from the m=3 partition [1,1,1]). All three available colors are used. There is only one bracelet: cyclic(1,2,3). The necklace cyclic(1,3,2) becomes equivalent under D_3 operation.
a(4,2) = 24 from two color signatures c[.]^3 c[.] and c[.]^2 c[.]^2 (from the two m=2 partitions of n=4: [3,1] and [2,2]). The first one produces 4*3=12 bracelets, namely 1112, 1113, 1114, 2221, 2223, 2224, 3331, 3332, 3334, 4441, 4442 and 4443, all taken cyclically. The second color signature leads to another 6*2=12 bracelets: 1122, 1133, 1144, 2233, 2244, 3344, 1212, 1313, 1414, 2323, 2424 and 3434, all taken cyclically. Together they provide the 24 bracelets counted by a(4,2). The same holds for the necklace case.
a(4,3) = 24 from the color signature c[.]^2 c[.]c[.]. There are 4*3 =12 color choices each with two bracelets: 1123, 1213, 1124, 1214, 1134, 1314, 2213, 2123, 2214, 2124, 2234, 2324, 3312, 3132, 3314, 3134, 3324, 3234, 4412, 4142, 4413, 4143, 4423 and 4243, each taken cyclically.
		

Crossrefs

Cf. A081721, A212360 (necklaces), A213941, A273891.

Programs

  • Mathematica
    (* t = A081720 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);
    T[n_, k_] := Binomial[n, k]*Sum[(-1)^i * Binomial[k, i]*t[n, k - i], {i, 0, k - 1}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)

Formula

a(n,m) = Sum_{j=1..p(n,m)} A213941(n, k(n,m,1)+j-1), with k(n,m,1) = A214314(n,m) the position where in the list of partitions of n in A-St order the first with m parts appears, and p(n,m) is the number of partitions of n with m parts shown in the array A008284. E.g., n=5, m=3: k(5,3,1) = A214314(5,3) = 4, p(5,3) = 2.
a(n,m) = binomial(n,m) * A273891(n,m). - Andrew Howroyd, Mar 25 2017
Showing 1-3 of 3 results.