cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A213943 Row sums of partition array A213939 and triangle A213940: number of representative bracelets with n beads and up to n colors.

Original entry on oeis.org

1, 2, 3, 9, 28, 144, 832, 6012, 48447, 444198, 4469834, 49650464, 597810739, 7809600123, 109524985564, 1646900490716, 26373465572350, 448901183773766, 8083772124339442, 153686286512223573, 3074405841292532560, 64582422678961767945
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2012

Keywords

Comments

See A213939 for representative bracelets of a color class defined by a signature, given by a partition.
If color c[j] is written as j, for j from {1, 2, ... ,n}, the representative multisets, corresponding to the bracelets in question, are the ones with the least sum of their members.
E.g., n=4, m=3: signature [2,1,1] (partition of n with 4 parts), representative multiset (written as an ordered list by convention) [1,1,2,3], with the two representative bracelets 1123 and 1213, both taken cyclically.
Number of bracelets with n beads over a n-ary alphabet {a1,a2,...,an} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 0, where #(w,x) counts the letters x in word w. - Andrew Howroyd, Dec 21 2017

Examples

			The a(4)= 9 representative bracelets are (j for c[j]):  1111, 1112, 1122, 1212, 1123, 1213, 1234, 1324 and 1243, all taken cyclically.
		

Crossrefs

Row sums of A213940.
Row sums of A214609.
Cf. A072605 (representative necklaces).

Programs

  • PARI
    a(n)={ if(n==0, 1,
      my(p=serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n))));
      my(c=sumdiv(n, d, eulerphi(n/d)*polcoeff(p, d))/n);
      my(r=if(n%2, sum(d=0, (n-1)/2, binomial((n-1)/2, d)*polcoeff(p, d)), polcoeff(p, n/2) + sum(d=0, n/2-1, binomial(n/2-1, d)*polcoeff(p, n/2-1-d)*(2^d + if(d%2, 0, binomial(d, d/2))))/2));
      ( (c + r)/2 ) )
    } \\ Andrew Howroyd, Dec 21 2017

Formula

a(n) = sum(A213939(n,k),k=1..p(n)), with p(n)=A000041(n), n >= 1.
a(n) = sum(A213940(n,m),m=1..n), n >= 1.

A213940 Triangle with entry a(n,m) giving the number of bracelets of n beads (dihedral D_n symmetry) with n colors available for each bead, but only m distinct fixed colors, say c[1],...,c[m], are present, with m from {1,...,n} and n>=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 3, 1, 3, 6, 6, 12, 1, 7, 20, 26, 30, 60, 1, 8, 40, 93, 150, 180, 360, 1, 18, 106, 424, 633, 1050, 1260, 2520, 1, 22, 304, 1180, 3260, 5040, 8400, 10080, 20160, 1, 46, 731, 4844, 16212, 29244, 45360, 75600, 90720, 181440
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2012

Keywords

Comments

This triangle is obtained from the partition array A213939 by summing in row n, for n>=1, all entries related to partitions of n with the same number of parts m.
a(n,m) is the number of bracelets of n beads (dihedral D_n symmetry) corresponding to the representative color multinomials obtained from all partitions of n with m parts by 'exponentiation', hence only m from the available n colors are present. As a representative multinomial of each of the p(n,m)=A008284(n,m) such m-color classes we take the one where the considered m part partition of n, [p[1],...,p[m]], written in nonincreasing order, is distributed as exponents on the color indices like c[1]^p[1]*...*c[m]^p[m]. That is only the first m colors from the n available ones are involved.
See the comments on A212359 for the Abramowitz-Stegun (A-St) order of partitions, and the 'exponentiation' to obtain multisets, used to encode color multinomials, from partitions.
The row sums of this triangle coincide with the ones of array A213939, and they are given by A213943.
Number of n-length bracelets w over a k-ary alphabet {a1,a2,...,ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226874). - Andrew Howroyd, Sep 26 2017

Examples

			n\m  1  2   3    4     5     6     7     8     9     10 ...
1    1
2    1  1
3    1  1   1
4    1  3   2    3
5    1  3   6    6    12
6    1  7  20   26    30    60
7    1  8  40   93   150   180   360
8    1 18 106  424   633  1050  1260  2520
9    1 22 304 1180  3260  5040  8400 10080 20160
10   1 46 731 4844 16212 29244 45360 75600 90720 181440
...
a(5,3) = 2 + 4 = 6, from A213939(5,4) + A213939(5,5), because k(5,3,1) = 4 and p(5,3) = 2.
a(2,1) = 1 because the partition [2] of n=2 with part number m=1 corresponds to the representative color multinomial (here monomial) c[1]^2 = c[1]*c[1], and there is one such representative bracelet. There is another bracelet color monomial in this class of n=2 colors where only m=1 color is active: c[2]*c[2]. See the triangle entry A213941(2,1)=2. The same holds for the necklace case.
a(3,1) = 1 from the color monomial representative c[1]^3. This class has 2 other members: c[2]^3 and c[3]^3. See A213941(3,1)=3. The same holds for the necklace case.
Like in the necklace case one has in general a(n,1)=1 and A213941(n,1) = n from the partition [n] providing the color signature and a representative c[1]^n.
a(3,2) = 1 from the representative color multinomial c[1]^2*c[2] (from the m=2 partition [2,1] of n=3) leading to just one representative bracelet (and necklace) cyclic(112) (when one uses j for color c[j]). The whole class consists of A213941(3,2)=6 bracelets (or necklaces): cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332).
a(3,3) = 1. The representative color multinomial is c[1]*c[2]*c[3] (from the m=3 partition [1,1,1]). There is only one bracelet cyclic(1,2,3) which constitutes already the whole class (A213941(3,3)=1). The necklace cyclic(1,3,2) becomes equivalent under D_3.
a(4,2) = 3 from two representative color multinomials c[1]^3*c[2] and c[1]^2*c[2]^2 (from the two m=2 partitions of n=4: [3,1] and [2,2]). The first one has one representative bracelet, namely cyclic(1112), the second one leads to the two representative bracelets: cyclic(1122) and cyclic(1212). Together these are the 3 bracelets counted by a(4,2). The first color class c[.]^3*c[.] consists of 4*3=12 bracelets, when all 4 colors are used. The second one consists of 2*6=12 bracelets. Together they sum up to the 24 bracelets counted by A213941(4,2). In this example the necklace case does not differ from the bracelet one.
		

Crossrefs

Columns k=2..5 are A213942, A214307, A214309, A214311.
Cf. A213934 (cyclic symmetry).

Programs

  • PARI
    Cyc(v)={my(s=vecsum(v)); sumdiv(gcd(v), d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s}
    CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v));  if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))}
    T(n,k)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [k,k]); t/2}
    for(n=1, 10, for(k=1,n, print1(T(n,k), ", ")); print); \\ Andrew Howroyd, Sep 26 2017
    
  • PARI
    \\ faster version; here U is A226874 as vector of polynomials.
    U(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))}
    T(n)={my(t=U(n)); vector(n, n, vector(n, k, ((1/n)*sumdiv(n, d, eulerphi(n/d) * polcoeff(t[d+1], k)) + if(n%2, sum(d=0, (n-1)/2, binomial((n-1)/2, d)*polcoeff(t[d+1], (k-1))), polcoeff(t[n/2+1], k) + sum(d=0, n/2-1, binomial(n/2-1, d)*(2^d + if(d%2, 0, binomial(d, d/2)))*polcoeff(t[n/2-d], k-2))/2))/2))}
    { my(t=T(10)); for(n=1, #t, print(t[n])) } \\ Andrew Howroyd, Dec 22 2017

Formula

a(n,m) = Sum_{j=1..p(n,m)}A213939(n,k(n,m,1)+j-1), with k(n,m,1) the position where in the list of partitions of n in A-St order the first with m parts appears, and p(n,m) is the number of partitions of n with m parts shown in the array A008284. E.g., n=5, m=3: k(5,3,1)=4, p(5,3)=2.

A213941 Partition array a(n,k) with the total number of bracelets (D_n symmetry) with n beads, each available in n colors, with color signature given by the k-th partition of n in Abramowitz-Stegun(A-St) order.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 12, 12, 24, 3, 5, 20, 40, 60, 120, 120, 12, 6, 30, 90, 45, 180, 720, 220, 600, 1440, 900, 60, 7, 42, 126, 168, 315, 1890, 1050, 1890, 2100, 12600, 6720, 6300, 18900, 7560, 360, 8, 56, 224, 280, 224, 672, 4032, 6384, 5544, 6384, 5880, 45360
Offset: 1

Views

Author

Wolfdieter Lang, Jul 20 2012

Keywords

Comments

This array is obtained by multiplying the entry of the array A213939(n,k) (number of bracelets (dihedral D_n symmetry) with n beads, each available in n colors, with color representative given by the n-multiset representative obtained from the k-th partition of n in A-St order after 'exponentiation') with the entry of the array A035206(n,k) (number of members in the equivalence class represented by the color multiset considered for A213939(n,k)): a(n,k)=A213939(n,k)*A035206(n,k), k=1..p(n)=A000041(n), n>=1. The row sums then give the total number of bracelets with n beads from n colors, given by A081721(n).
See A212359 for references, the 'exponentiation', and a link. For multiset signatures and representative multisets defining color multinomials see also a link in A213938.
The corresponding triangle with the summed row entries related to partitions of n with fixed number of parts is A214306.

Examples

			n\k 1   2    3    4    5     6     7     8     9    10   11
1   1
2   2   1
3   3   6    1
4   4  12   12   24    3
5   5  20   40   60  120   120    12
6   6  30   90   45  180   720   220   600  1440   900   60
...
Row m=7 is: 7 42 126 168 315 1890 1050 1890 2100 12600 6720 6300 18900 7560 360.
For the rows n=1 to n=15 see the link.
a(3,1) = 3 because the 3 bracelets with 3 beads coming in 3 colors have the color multinomials (here monomials) c[1]^3=c[1]*c[1]*c[1], c[2]^3 and c[3]^3. The partition of 3 is [3], the color representative is c[1]^3, and the equivalence class with color signature from the partition [3] has the three given members. There is no difference between necklace and bracelet numbers in this case.
a(3,2) = 6 from the color signature 2,1 with the representative multinomial c[1]^2 c[2] with coefficient A213939(3,2) = 1, the only 3-bracelet cyclic(112) (taking j for the color c[j]), and A035206(3,2) = 6 members of the whole color equivalence class: cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332). There is no difference between necklaces and bracelets numbers in this case.
a(3,3) = 1, color signature 1^3 = 1,1,1 with representative multinomial c[1]*c[2]*c[3] with coefficient A213939(3,3)=1 from the bracelet cyclic(1,2,3). The necklace (1,3,2) becomes equivalent to this one under D_3 operation. There are no other members in this class (A035206(3,3)=1).
The sum of row No. 3 is 10 = A081721(3). The bracelets are 111, 222, 333, 112, 113, 221, 223, 331, 332 and 123, all taken cyclically.
		

Crossrefs

Formula

a(n,k) = A213939(n,k)*A035206(n,k), k=1, 2, ..., p(n) = A000041(n), n >= 1.

A214309 a(n) is the number of representative four-color bracelets (necklaces with turning over allowed) with n beads, for n >= 4.

Original entry on oeis.org

3, 6, 26, 93, 424, 1180, 4844, 16165, 66953, 216804, 852822, 2949804, 12119134, 40886724, 160826008, 572457489, 2331396595, 8104270828, 32043699894, 115995102806, 471268872328, 1674576998468, 6641876380417, 24364816845446, 98894256728960, 357006263815751
Offset: 4

Views

Author

Wolfdieter Lang, Jul 31 2012

Keywords

Comments

This is the fourth column (m=4) of triangle A213940.
The relevant p(n,4)= A008284(n,4) representative color multinomials have exponents (signatures) from the 4 part partitions of n, written with nonincreasing parts. E.g., n=6: [3,1,1,1] and [2,2,1,1] (p(6,4)=2). The corresponding representative bracelets have the four-color multinomials c[1]^3*c[2]*c[3]*c[4] and c[1]^2*c[2]^2*c[3]*c[4].
Compare this with A032275 where also bracelets with less than four colors are included, and not only representatives are counted.
Number of n-length bracelets w over a 4-ary alphabet {a1,a2,...,a4} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a4) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226883). The number of 4 color bracelets up to permutations of colors is given by A056359. - Andrew Howroyd, Sep 26 2017

Examples

			a(4) = A213939(4,5) = 3 from the representative bracelets (with colors  j for c[j], j=1, 2, ..., 4) 1234, 1342 and 1423, all taken cyclically. The necklace cyclic(1324), for example, becomes equivalent to cyclic(1423) under the dihedral D_4 turning over (or reflection) operation.
a(6) = A213939(6, 8) = A213939(6, 9) =  10 + 16 = 26. See the comment above for the representative color multinomials for each case.
		

Crossrefs

Cf. A213939, A213940, A214311 (m=5), A214312 (m=4, all bracelets).

Programs

  • PARI
    Cyc(v)={my(g=fold(gcd,v), s=vecsum(v)); sumdiv(g, d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s}
    CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v));  if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))}
    a(n)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [4,4]); t/2} \\ Andrew Howroyd, Sep 26 2017

Formula

a(n) = A213940(n,4), n >= 4.
a(n) = sum(A213939(n,k),k=(2+floor(n/2) + p(n,3))..(p(n,4)+1+floor(n/2)+p(n,3))), n>=4, with p(n,m) = A008284(n,m) the number of partitions of n with m parts.

Extensions

Terms a(26) and beyond from Andrew Howroyd, Sep 26 2017

A214311 a(n) is the number of representative five-color bracelets (necklaces with turning over allowed) with n beads, for n >= 5.

Original entry on oeis.org

12, 30, 150, 633, 3260, 16212, 66810, 298495, 1410402, 6403842, 31103899, 135342046, 633228696, 2936824916, 13676037486, 65355191817, 298065986582, 1398226666434, 6585151203697, 30958838054304, 148994847644780
Offset: 5

Views

Author

Wolfdieter Lang, Aug 08 2012

Keywords

Comments

This is the fifth column (m=5) of triangle A213940.
The relevant p(n,5)= A008284(n,5) representative color multinomials have exponents (signatures) from the five-part partitions of n, written with nonincreasing parts. E.g., n=7: [3,1,1,1,1] and [2,2,1,1,1] (p(7,5)=2). The corresponding representative bracelets have the five-color multinomials c[1]^3*c[2]*c[3]*c[4]*c[5] and c[1]^2*c[2]^2*c[3]*c[4]*c[5].
Number of n-length bracelets w over a 5-ary alphabet {a1,a2,...,a5} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a5) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226884). The number of 5 color bracelets up to permutations of colors is given by A056360. - Andrew Howroyd, Sep 26 2017

Examples

			a(5) = A213940(5,5) = A213939(5,7) = 12 from the representative bracelets (with colors j for c[j], j=1,...,5) 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235 and 14325, all taken cyclically.
		

Crossrefs

Cf. A213939, A213940, A214309 (m=4 case), A214313 (m=5, all bracelets).

Formula

a(n) = A213940(n,5), n >= 5.
a(n) = sum(A213939(n,k),k= b(n,5)..b(n,6)-1), n>=6, with b(n,m) = A214314(n,m) the position where the first m part partition of n appears in the Abramowitz-Stegun ordering of partitions (see A036036 for the reference and a historical comment). a(5) = A213939(5,b(5,5)) = A213939(5,7) = 12.

A214307 a(n) is the number of representative three-color bracelets (necklaces with turn over allowed) with n beads for n >= 3.

Original entry on oeis.org

1, 2, 6, 20, 40, 106, 304, 731, 1936, 5769, 14343, 39583, 117957, 305576, 855474, 2565922, 6793516, 19242857, 57827068, 155681341, 444461623, 1337436721, 3645877447, 10471728930, 31534868169, 86818242806, 250543852080, 754851821246, 2094887707000
Offset: 3

Views

Author

Wolfdieter Lang, Jul 31 2012

Keywords

Comments

This is the third column (m=3) of triangle A213940.
The relevant p(n,3)= A008284(n,3) representative color multinomials have exponents (signatures) from the 3 part partitions of n, written with nonincreasing parts. E.g., n=6: [4,1,1], [3,2,1] and [2,2,2] (p(6,3)=3). The corresponding representative bracelets have the three-color multinomials c[1]^4*c[2]*c[3], c[1]^3*c[2]^2*c[3] and c[1]^2*c[2]^2*c[3]^2. Therefore, color c[1] is dominant, except for the last case.
Compare this with A027671 where also bracelets with less than three colors are included and not only three-color representatives are counted.
Number of n-length bracelets w over ternary alphabet {a,b,c} such that #(w,a) >= #(w,b) >= #(w,c) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226882). The number of 3 color bracelets up to permutations of colors is given by A056358. - Andrew Howroyd, Sep 26 2017

Examples

			a(5) = A213939(5,4) + A213939(5,5) = 2 + 4 = 6 from the representative bracelets (with colors j for c[j], j=1,2,3) 11123, 11213, 11223, 11232, 12123 and 12213 , all taken cyclically. The first two have color signature (exponents) [3,1,1] and the other four ones have signature [2,2,1].
a(6) = A213939(6,5) + A213939(6,6) + A213939(6,7) = 3 + 6 + 11 = 20. The first three representative bracelets have color signature [4,1,1], the next six have signature [3,2,1] and the remaining 11 ones have signature [2,2,2]. The corresponding representative color multinomials are c[1]^4*c[2]*c[3], c[1]^3*c[2]^2*c[3] and c[1]^2*c[2]^2*c[3]^2.
		

Crossrefs

Cf. A213939, A213940, A214309 (m=4), A214310 (m=3, all bracelets).

Programs

  • PARI
    Cyc(v)={my(g=fold(gcd,v), s=vecsum(v)); sumdiv(g, d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s}
    CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v));  if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))}
    a(n)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [3,3]); t/2} \\ Andrew Howroyd, Sep 26 2017

Formula

a(n) = A213940(n,3), n >= 3.
a(n) = sum(A213939(n,k),k=(2+floor(n/2))..p(n,3)+1+floor(n/2)), n >= 3, with p(n,3) = A008284(n,3) the number of partitions of n with three parts.

Extensions

Terms a(26) and beyond from Andrew Howroyd, Sep 26 2017

A214312 a(n) is the number of all four-color bracelets (necklaces with turning over allowed) with n beads and the four colors are from a repertoire of n distinct colors, for n >= 4.

Original entry on oeis.org

3, 120, 2040, 21420, 183330, 1320480, 8691480, 52727400, 303958710, 1674472800, 8928735816, 46280581620, 234611247780, 1166708558400, 5710351190400, 27565250985360, 131495088522060, 620771489730000, 2903870526350640, 13473567673441260, 62061657617625204, 283995655732351200
Offset: 4

Views

Author

Wolfdieter Lang, Jul 31 2012

Keywords

Comments

This is the fourth column (m=4) of triangle A214306.
Each 4 part partition of n, with the parts written in nonincreasing order, defines a color signature. For a given color signature, say [p[1], p[2], p[3], p[4]], with p[1] >= p[2] >= p[3] >= p[4] >= 1, there are A213941(n,k)= A035206(n,k)*A213939(n,k) bracelets if this signature corresponds (with the order of the parts reversed) to the k-th partition of n in Abramowitz-Stegun (A-St) order. See A213941 for more details. Here all p(n,4)= A008284(n,4) partitions of n with 4 parts are considered. The color repertoire for a bracelet with n beads is [c[1], ..., c[n]].
Compare this with A032275 where also bracelets with less than four colors are included, and the color repertoire is only [c[1], c[2], c[3], c[4]] for all n.

Examples

			a(5) = A213941(5,6) = 120 from the bracelet (with colors j for c[j], j=1, 2, ..., 5) 11234, 11243, 11324, 12134, 13124 and 14123, all six taken cyclically, each representing a class of order A035206(5,6) = 20 (if all 5 colors are used). For example, cyclic(11342) becomes equivalent to cyclic(11243) by turning over or reflection. The multiplicity 20 depends only on the color signature.
		

Crossrefs

Cf. A213941, A214306, A214309 (m=4, representative bracelets), A214313 (m=5).

Programs

  • Mathematica
    t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);
    a56344[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}];
    a[n_] := Binomial[n, 4]*a56344[n, 4];
    Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)

Formula

a(n) = A214306(n,4), n >= 4.
a(n) = sum(A213941(n,k),k = A214314(n,4) .. (A214314(n,4) - 1 + A008284(n,4))), n >= 4.
a(n) = binomial(n,4) * A056344(n). - Andrew Howroyd, Mar 25 2017

A213942 a(n) is the number of representative two-color bracelets (necklaces with turnover allowed) with n beads for n >= 2.

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 18, 22, 46, 62, 136, 189, 409, 611, 1344, 2055, 4535, 7154, 15881, 25481, 56533, 92204, 204759, 337593, 748665, 1246862, 2762111, 4636389, 10253938, 17334800, 38278784, 65108061, 143534770, 245492243, 540353057, 928772649, 2041154125
Offset: 2

Views

Author

Wolfdieter Lang, Jul 31 2012

Keywords

Comments

This is the second column (m=2) of triangle A213940.
The relevant floor(n/2) representative color multinomials are c[1]^(n-1)*c[2], c[1]^(n-2)*c[2]^2, ..., c[1]^(n-floor(n/2))* c[2]^(floor(n/2)). For such representative bracelets the color c[1] is therefore preferred. Only for even n can c[2] appear as often as c[1], namely, n/2 times.
Note that beads with different colors are always present. This is in contrast to, e.g., A000029, where not only representatives but also one-color bracelets are counted. This sequences gives the number of binary bracelets with at least as many 0's as 1's and at least one 1 (bracelet analog of A226881). The number of two-color bracelets up to permutations of colors is given by A056357. For odd n these two sequences are equal. For a(8), the bracelets 00011011 and 11100100 are equivalent in A056357 but distinct in this sequence. - Andrew Howroyd and Wolfdieter Lang, Sep 25 2017

Examples

			a(5) = A213939(5,2) + A213939(5,3) = 1 + 2 = 3 from the representative bracelets (with colors j for c[j], j=1,2) cyclic(11112), cyclic(11122) and cyclic(11212). The first one has color signature (exponents) [4,1] and the two others have signature [3,2]. For the number of all two-color 5-bracelets with beads of five colors available see A214308(5) = 60.
a(8) = 18 =  1 + 4 + 5 + 8 for the partitions of 8 with 2 parts (7,1), (6, 2), (5,3), (4,4), respectively. see A213939(5, k), k = 2..5). The 8 representative bracelets for the exponents (signature) from partition (4,4) are B1 = (11112222), B2 = (11121222), B3 = (11212122), B4 = (11212212), B5 = (11221122), B6 = (12121212), B7 = (11122122) and B8 = (11211222). B1 to B6 are color exchange (1 <-> 2) invariant (modulo D_8 symmetry, i.e., cyclic or anti-cyclic operations). B7 is equivalent to B8 under color exchange.
This explains why A056357(8) = 17. The difference between the present sequence and A056357 is that there, besides D_n symmetry, also color exchange is allowed. Here only color exchange compatible with D_n symmetry is allowed. - _Wolfdieter Lang_, Sep 28 2017
		

Crossrefs

Cf. A213939, A213940, A214307 (m=3), A214308 (m=2, all bracelets).

Programs

  • Mathematica
    a29[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n);
    a5648[n_] := 1/2*(Binomial[2*Quotient[n, 2], Quotient[n, 2]] + DivisorSum[n, EulerPhi[#]*Binomial[2*n/#, n/#]&]/(2*n));
    a[n_] := a29[n]/2 - 1 + If[EvenQ[n], a5648[n/2]/2, 0];
    Array[a, 37, 2] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *)

Formula

a(n) = A213940(n,2), n >= 2.
a(n) = Sum_{k=2..A008284(n,2)+1} A213939(n,k), n >= 2, with A008284(n,2) = floor(n/2).
a(2n) = (A000029(2n) + A005648(n)) / 2 - 1, a(2n+1) = A000029(2n+1) / 2 - 1. - Andrew Howroyd, Sep 25 2017

Extensions

Terms a(26) and beyond from Andrew Howroyd, Sep 25 2017

A214310 a(n) is the number of all three-color bracelets (necklaces with turning over allowed) with n beads and the three colors are from a repertoire of n distinct colors, for n >= 3.

Original entry on oeis.org

1, 24, 180, 1120, 5145, 23016, 91056, 357480, 1327095, 4893680, 17525508, 62254920, 217457695, 753332160, 2581110000, 8779264032, 29624681763, 99350001360, 331159123260, 1098168382080, 3624003213369, 11908069219816, 38972450763000, 127087400895000
Offset: 3

Views

Author

Wolfdieter Lang, Jul 31 2012

Keywords

Comments

This is the third column (m=3) of triangle A214306.
Each 3 part partition of n, with the parts written in nonincreasing order, defines a color signature. For a given color signature, say [p[1], p[2], p[3]], with p[1] >= p[2] >= p[3] >= 1, there are A213941(n,k)= A035206(n,k)* A213939(n,k) bracelets if this signature corresponds (with the order of the parts reversed) to the k-th partition of n in Abramowitz-Stegun (A-St) order. See A213941 for more details. Here all p(n,3)= A008284(n,3) partitions of n with 3 parts are considered. The color repertoire for a bracelet with n beads is [c[1], ..., c[n]].
Compare this with A027671 where also single color bracelets are included, and the color repertoire is only [c[1], c[2], c[3]] for all n.

Examples

			a(5) = A213941(5,4) + A213941(5,5) = 60 + 120 = 180 from the bracelet (with colors j for c[j], j=1, 2, ..., 5) 11123 and 11213, both taken cyclically, each representing a class of order A035206(5,4)= 30 (if all 5 colors are used), and 11223, 11232, 12123 and 12213, all taken cyclically, each representing a class of order A035206(5,5)= 30. For example, cyclic(11322) becomes equivalent to cyclic(11223) by turning over or reflection. The multiplicity A035206 depends only on the color signature.
		

Crossrefs

Cf. A213941, A214306, A214307 (m=3, representative bracelets), A214312 (m=4).

Formula

a(n) = A214306(n,3), n >= 3.
a(n) = sum(A213941(n,k), k = A214314(n,3).. (A214314(n,3) - 1 + A008284(n,3))), n >= 3.
a(n) = binomial(n,3) * A056343(n). - Andrew Howroyd, Mar 25 2017

Extensions

a(26) from Andrew Howroyd, Mar 25 2017

A214313 a(n) is the number of all five-color bracelets (necklaces with turning over allowed) with n beads and the four colors are from a repertoire of n distinct colors, for n >= 5.

Original entry on oeis.org

12, 900, 25200, 442680, 5846400, 64420272, 622175400, 5466166200, 44611306740, 343916472900, 2531921456064, 17956666859040, 123458676825120, 827056125453600, 5419508203393200, 34847210197637424, 220424306985639540, 1374479672119161300, 8463477229726134000, 51536194734146965920, 310706598354410079360
Offset: 5

Views

Author

Wolfdieter Lang, Aug 08 2012

Keywords

Comments

This is the fifth column (m=5) of triangle A214306.
Each 5 part partition of n, with the parts written in nonincreasing order, defines a color signature. For a given color signature, say [p[1], p[2], ..., p[5]], with p[1] >= p[2] >= .. >= p[5] >= 1, there are A213941(n,k) = A035206(n,k)*A213939(n,k) bracelets if this signature corresponds (with the order of the parts reversed) to the k-th partition of n in Abramowitz-Stegun (A-St) order. See A213941 for more details. Here all p(n,5)= A008284(n,5) partitions of n with 5 parts are considered. The color repertoire for a bracelet with n beads is [c[1], ..., c[n]].
It appears that this sequence is divisible by 12, producing 1, 75, 2100, 36890, 487200, 5368356, 51847950, 455513850, ...
Compare this with A056345 where only 5 colors are used for all n >= 5.

Examples

			a(6) = A213941(6,10) = 900 from the bracelet with color signature [2,1,1,1,1] and color repertoire [c[j], j=1, 2, ..., 6]. There are A213939(6,10) = 30 bracelets with representative color multinomials c[1]^2 c[2] c[3] c[4] c[5]. If the colors c[j] are taken as j, e.g., 112345, 112354, 112435, 112453, 112534, 112543, 113245, 113254, 113425, (113452 is equivalent to 112543 by turning over), 113524, (113542 ==112453), 114235, ..., 121345, ... (all taken cyclically). Each of these 30 bracelets represents a class of A035206(6,10) = 30 bracelets when all six colors are used. Thus a(6) = 30*30 = 900 = 12*75.
		

Crossrefs

Cf. A213941, A214306, A214311 (m=5, representative bracelets), A214312 (m=4).

Formula

a(n) = A214306(n,5), n >= 5.
a(n) = sum(A213941(n,k),k = A214314(n,5) .. (A214314(n,5) - 1 + A008284(n,5))), n >= 5.
a(n) = binomial(n,5) * A056345(n). - Andrew Howroyd, Mar 25 2017
Showing 1-10 of 13 results. Next