A213943
Row sums of partition array A213939 and triangle A213940: number of representative bracelets with n beads and up to n colors.
Original entry on oeis.org
1, 2, 3, 9, 28, 144, 832, 6012, 48447, 444198, 4469834, 49650464, 597810739, 7809600123, 109524985564, 1646900490716, 26373465572350, 448901183773766, 8083772124339442, 153686286512223573, 3074405841292532560, 64582422678961767945
Offset: 1
The a(4)= 9 representative bracelets are (j for c[j]): 1111, 1112, 1122, 1212, 1123, 1213, 1234, 1324 and 1243, all taken cyclically.
Cf.
A072605 (representative necklaces).
-
a(n)={ if(n==0, 1,
my(p=serlaplace(prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n))));
my(c=sumdiv(n, d, eulerphi(n/d)*polcoeff(p, d))/n);
my(r=if(n%2, sum(d=0, (n-1)/2, binomial((n-1)/2, d)*polcoeff(p, d)), polcoeff(p, n/2) + sum(d=0, n/2-1, binomial(n/2-1, d)*polcoeff(p, n/2-1-d)*(2^d + if(d%2, 0, binomial(d, d/2))))/2));
( (c + r)/2 ) )
} \\ Andrew Howroyd, Dec 21 2017
A213940
Triangle with entry a(n,m) giving the number of bracelets of n beads (dihedral D_n symmetry) with n colors available for each bead, but only m distinct fixed colors, say c[1],...,c[m], are present, with m from {1,...,n} and n>=1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 2, 3, 1, 3, 6, 6, 12, 1, 7, 20, 26, 30, 60, 1, 8, 40, 93, 150, 180, 360, 1, 18, 106, 424, 633, 1050, 1260, 2520, 1, 22, 304, 1180, 3260, 5040, 8400, 10080, 20160, 1, 46, 731, 4844, 16212, 29244, 45360, 75600, 90720, 181440
Offset: 1
n\m 1 2 3 4 5 6 7 8 9 10 ...
1 1
2 1 1
3 1 1 1
4 1 3 2 3
5 1 3 6 6 12
6 1 7 20 26 30 60
7 1 8 40 93 150 180 360
8 1 18 106 424 633 1050 1260 2520
9 1 22 304 1180 3260 5040 8400 10080 20160
10 1 46 731 4844 16212 29244 45360 75600 90720 181440
...
a(5,3) = 2 + 4 = 6, from A213939(5,4) + A213939(5,5), because k(5,3,1) = 4 and p(5,3) = 2.
a(2,1) = 1 because the partition [2] of n=2 with part number m=1 corresponds to the representative color multinomial (here monomial) c[1]^2 = c[1]*c[1], and there is one such representative bracelet. There is another bracelet color monomial in this class of n=2 colors where only m=1 color is active: c[2]*c[2]. See the triangle entry A213941(2,1)=2. The same holds for the necklace case.
a(3,1) = 1 from the color monomial representative c[1]^3. This class has 2 other members: c[2]^3 and c[3]^3. See A213941(3,1)=3. The same holds for the necklace case.
Like in the necklace case one has in general a(n,1)=1 and A213941(n,1) = n from the partition [n] providing the color signature and a representative c[1]^n.
a(3,2) = 1 from the representative color multinomial c[1]^2*c[2] (from the m=2 partition [2,1] of n=3) leading to just one representative bracelet (and necklace) cyclic(112) (when one uses j for color c[j]). The whole class consists of A213941(3,2)=6 bracelets (or necklaces): cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332).
a(3,3) = 1. The representative color multinomial is c[1]*c[2]*c[3] (from the m=3 partition [1,1,1]). There is only one bracelet cyclic(1,2,3) which constitutes already the whole class (A213941(3,3)=1). The necklace cyclic(1,3,2) becomes equivalent under D_3.
a(4,2) = 3 from two representative color multinomials c[1]^3*c[2] and c[1]^2*c[2]^2 (from the two m=2 partitions of n=4: [3,1] and [2,2]). The first one has one representative bracelet, namely cyclic(1112), the second one leads to the two representative bracelets: cyclic(1122) and cyclic(1212). Together these are the 3 bracelets counted by a(4,2). The first color class c[.]^3*c[.] consists of 4*3=12 bracelets, when all 4 colors are used. The second one consists of 2*6=12 bracelets. Together they sum up to the 24 bracelets counted by A213941(4,2). In this example the necklace case does not differ from the bracelet one.
-
Cyc(v)={my(s=vecsum(v)); sumdiv(gcd(v), d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s}
CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v)); if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))}
T(n,k)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [k,k]); t/2}
for(n=1, 10, for(k=1,n, print1(T(n,k), ", ")); print); \\ Andrew Howroyd, Sep 26 2017
-
\\ faster version; here U is A226874 as vector of polynomials.
U(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))}
T(n)={my(t=U(n)); vector(n, n, vector(n, k, ((1/n)*sumdiv(n, d, eulerphi(n/d) * polcoeff(t[d+1], k)) + if(n%2, sum(d=0, (n-1)/2, binomial((n-1)/2, d)*polcoeff(t[d+1], (k-1))), polcoeff(t[n/2+1], k) + sum(d=0, n/2-1, binomial(n/2-1, d)*(2^d + if(d%2, 0, binomial(d, d/2)))*polcoeff(t[n/2-d], k-2))/2))/2))}
{ my(t=T(10)); for(n=1, #t, print(t[n])) } \\ Andrew Howroyd, Dec 22 2017
A213941
Partition array a(n,k) with the total number of bracelets (D_n symmetry) with n beads, each available in n colors, with color signature given by the k-th partition of n in Abramowitz-Stegun(A-St) order.
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 12, 12, 24, 3, 5, 20, 40, 60, 120, 120, 12, 6, 30, 90, 45, 180, 720, 220, 600, 1440, 900, 60, 7, 42, 126, 168, 315, 1890, 1050, 1890, 2100, 12600, 6720, 6300, 18900, 7560, 360, 8, 56, 224, 280, 224, 672, 4032, 6384, 5544, 6384, 5880, 45360
Offset: 1
n\k 1 2 3 4 5 6 7 8 9 10 11
1 1
2 2 1
3 3 6 1
4 4 12 12 24 3
5 5 20 40 60 120 120 12
6 6 30 90 45 180 720 220 600 1440 900 60
...
Row m=7 is: 7 42 126 168 315 1890 1050 1890 2100 12600 6720 6300 18900 7560 360.
For the rows n=1 to n=15 see the link.
a(3,1) = 3 because the 3 bracelets with 3 beads coming in 3 colors have the color multinomials (here monomials) c[1]^3=c[1]*c[1]*c[1], c[2]^3 and c[3]^3. The partition of 3 is [3], the color representative is c[1]^3, and the equivalence class with color signature from the partition [3] has the three given members. There is no difference between necklace and bracelet numbers in this case.
a(3,2) = 6 from the color signature 2,1 with the representative multinomial c[1]^2 c[2] with coefficient A213939(3,2) = 1, the only 3-bracelet cyclic(112) (taking j for the color c[j]), and A035206(3,2) = 6 members of the whole color equivalence class: cyclic(112), cyclic(113), cyclic(221), cyclic(223), cyclic(331) and cyclic(332). There is no difference between necklaces and bracelets numbers in this case.
a(3,3) = 1, color signature 1^3 = 1,1,1 with representative multinomial c[1]*c[2]*c[3] with coefficient A213939(3,3)=1 from the bracelet cyclic(1,2,3). The necklace (1,3,2) becomes equivalent to this one under D_3 operation. There are no other members in this class (A035206(3,3)=1).
The sum of row No. 3 is 10 = A081721(3). The bracelets are 111, 222, 333, 112, 113, 221, 223, 331, 332 and 123, all taken cyclically.
A214309
a(n) is the number of representative four-color bracelets (necklaces with turning over allowed) with n beads, for n >= 4.
Original entry on oeis.org
3, 6, 26, 93, 424, 1180, 4844, 16165, 66953, 216804, 852822, 2949804, 12119134, 40886724, 160826008, 572457489, 2331396595, 8104270828, 32043699894, 115995102806, 471268872328, 1674576998468, 6641876380417, 24364816845446, 98894256728960, 357006263815751
Offset: 4
a(4) = A213939(4,5) = 3 from the representative bracelets (with colors j for c[j], j=1, 2, ..., 4) 1234, 1342 and 1423, all taken cyclically. The necklace cyclic(1324), for example, becomes equivalent to cyclic(1423) under the dihedral D_4 turning over (or reflection) operation.
a(6) = A213939(6, 8) = A213939(6, 9) = 10 + 16 = 26. See the comment above for the representative color multinomials for each case.
-
Cyc(v)={my(g=fold(gcd,v), s=vecsum(v)); sumdiv(g, d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s}
CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v)); if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))}
a(n)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [4,4]); t/2} \\ Andrew Howroyd, Sep 26 2017
A214311
a(n) is the number of representative five-color bracelets (necklaces with turning over allowed) with n beads, for n >= 5.
Original entry on oeis.org
12, 30, 150, 633, 3260, 16212, 66810, 298495, 1410402, 6403842, 31103899, 135342046, 633228696, 2936824916, 13676037486, 65355191817, 298065986582, 1398226666434, 6585151203697, 30958838054304, 148994847644780
Offset: 5
a(5) = A213940(5,5) = A213939(5,7) = 12 from the representative bracelets (with colors j for c[j], j=1,...,5) 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235 and 14325, all taken cyclically.
A214307
a(n) is the number of representative three-color bracelets (necklaces with turn over allowed) with n beads for n >= 3.
Original entry on oeis.org
1, 2, 6, 20, 40, 106, 304, 731, 1936, 5769, 14343, 39583, 117957, 305576, 855474, 2565922, 6793516, 19242857, 57827068, 155681341, 444461623, 1337436721, 3645877447, 10471728930, 31534868169, 86818242806, 250543852080, 754851821246, 2094887707000
Offset: 3
a(5) = A213939(5,4) + A213939(5,5) = 2 + 4 = 6 from the representative bracelets (with colors j for c[j], j=1,2,3) 11123, 11213, 11223, 11232, 12123 and 12213 , all taken cyclically. The first two have color signature (exponents) [3,1,1] and the other four ones have signature [2,2,1].
a(6) = A213939(6,5) + A213939(6,6) + A213939(6,7) = 3 + 6 + 11 = 20. The first three representative bracelets have color signature [4,1,1], the next six have signature [3,2,1] and the remaining 11 ones have signature [2,2,2]. The corresponding representative color multinomials are c[1]^4*c[2]*c[3], c[1]^3*c[2]^2*c[3] and c[1]^2*c[2]^2*c[3]^2.
-
Cyc(v)={my(g=fold(gcd,v), s=vecsum(v)); sumdiv(g, d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s}
CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v)); if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))}
a(n)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [3,3]); t/2} \\ Andrew Howroyd, Sep 26 2017
A214312
a(n) is the number of all four-color bracelets (necklaces with turning over allowed) with n beads and the four colors are from a repertoire of n distinct colors, for n >= 4.
Original entry on oeis.org
3, 120, 2040, 21420, 183330, 1320480, 8691480, 52727400, 303958710, 1674472800, 8928735816, 46280581620, 234611247780, 1166708558400, 5710351190400, 27565250985360, 131495088522060, 620771489730000, 2903870526350640, 13473567673441260, 62061657617625204, 283995655732351200
Offset: 4
a(5) = A213941(5,6) = 120 from the bracelet (with colors j for c[j], j=1, 2, ..., 5) 11234, 11243, 11324, 12134, 13124 and 14123, all six taken cyclically, each representing a class of order A035206(5,6) = 20 (if all 5 colors are used). For example, cyclic(11342) becomes equivalent to cyclic(11243) by turning over or reflection. The multiplicity 20 depends only on the color signature.
-
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);
a56344[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}];
a[n_] := Binomial[n, 4]*a56344[n, 4];
Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
A213942
a(n) is the number of representative two-color bracelets (necklaces with turnover allowed) with n beads for n >= 2.
Original entry on oeis.org
1, 1, 3, 3, 7, 8, 18, 22, 46, 62, 136, 189, 409, 611, 1344, 2055, 4535, 7154, 15881, 25481, 56533, 92204, 204759, 337593, 748665, 1246862, 2762111, 4636389, 10253938, 17334800, 38278784, 65108061, 143534770, 245492243, 540353057, 928772649, 2041154125
Offset: 2
a(5) = A213939(5,2) + A213939(5,3) = 1 + 2 = 3 from the representative bracelets (with colors j for c[j], j=1,2) cyclic(11112), cyclic(11122) and cyclic(11212). The first one has color signature (exponents) [4,1] and the two others have signature [3,2]. For the number of all two-color 5-bracelets with beads of five colors available see A214308(5) = 60.
a(8) = 18 = 1 + 4 + 5 + 8 for the partitions of 8 with 2 parts (7,1), (6, 2), (5,3), (4,4), respectively. see A213939(5, k), k = 2..5). The 8 representative bracelets for the exponents (signature) from partition (4,4) are B1 = (11112222), B2 = (11121222), B3 = (11212122), B4 = (11212212), B5 = (11221122), B6 = (12121212), B7 = (11122122) and B8 = (11211222). B1 to B6 are color exchange (1 <-> 2) invariant (modulo D_8 symmetry, i.e., cyclic or anti-cyclic operations). B7 is equivalent to B8 under color exchange.
This explains why A056357(8) = 17. The difference between the present sequence and A056357 is that there, besides D_n symmetry, also color exchange is allowed. Here only color exchange compatible with D_n symmetry is allowed. - _Wolfdieter Lang_, Sep 28 2017
-
a29[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n);
a5648[n_] := 1/2*(Binomial[2*Quotient[n, 2], Quotient[n, 2]] + DivisorSum[n, EulerPhi[#]*Binomial[2*n/#, n/#]&]/(2*n));
a[n_] := a29[n]/2 - 1 + If[EvenQ[n], a5648[n/2]/2, 0];
Array[a, 37, 2] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *)
A214310
a(n) is the number of all three-color bracelets (necklaces with turning over allowed) with n beads and the three colors are from a repertoire of n distinct colors, for n >= 3.
Original entry on oeis.org
1, 24, 180, 1120, 5145, 23016, 91056, 357480, 1327095, 4893680, 17525508, 62254920, 217457695, 753332160, 2581110000, 8779264032, 29624681763, 99350001360, 331159123260, 1098168382080, 3624003213369, 11908069219816, 38972450763000, 127087400895000
Offset: 3
a(5) = A213941(5,4) + A213941(5,5) = 60 + 120 = 180 from the bracelet (with colors j for c[j], j=1, 2, ..., 5) 11123 and 11213, both taken cyclically, each representing a class of order A035206(5,4)= 30 (if all 5 colors are used), and 11223, 11232, 12123 and 12213, all taken cyclically, each representing a class of order A035206(5,5)= 30. For example, cyclic(11322) becomes equivalent to cyclic(11223) by turning over or reflection. The multiplicity A035206 depends only on the color signature.
A214313
a(n) is the number of all five-color bracelets (necklaces with turning over allowed) with n beads and the four colors are from a repertoire of n distinct colors, for n >= 5.
Original entry on oeis.org
12, 900, 25200, 442680, 5846400, 64420272, 622175400, 5466166200, 44611306740, 343916472900, 2531921456064, 17956666859040, 123458676825120, 827056125453600, 5419508203393200, 34847210197637424, 220424306985639540, 1374479672119161300, 8463477229726134000, 51536194734146965920, 310706598354410079360
Offset: 5
a(6) = A213941(6,10) = 900 from the bracelet with color signature [2,1,1,1,1] and color repertoire [c[j], j=1, 2, ..., 6]. There are A213939(6,10) = 30 bracelets with representative color multinomials c[1]^2 c[2] c[3] c[4] c[5]. If the colors c[j] are taken as j, e.g., 112345, 112354, 112435, 112453, 112534, 112543, 113245, 113254, 113425, (113452 is equivalent to 112543 by turning over), 113524, (113542 ==112453), 114235, ..., 121345, ... (all taken cyclically). Each of these 30 bracelets represents a class of A035206(6,10) = 30 bracelets when all six colors are used. Thus a(6) = 30*30 = 900 = 12*75.
Showing 1-10 of 13 results.
Comments