A214018 Least k >= 1, such that prime(n) + k has the form 2^m * q, m >= 0, where q >= 2 is prime.
1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 3, 3, 4, 2, 1, 2, 3, 3, 1, 3, 2, 3, 2, 1, 1, 1, 5, 3, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 3, 2, 3, 3, 5, 5, 2, 1, 1, 2, 1, 3, 4, 2, 1, 3, 1, 7, 2, 3, 3, 3, 1, 3, 3, 1, 5, 1, 3, 3, 2, 1, 2, 3, 4, 3, 3
Offset: 1
Keywords
Examples
a(1)=1, since 2+1=3=2^0*3; a(2)=1, since 3+1=2^1*2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Kevin Broughan and Zhou Qizhi, Flat primes and thin primes, Bulletin of the Australian Mathematical Society 82:2 (2010), pp. 282-292.
Programs
-
Mathematica
Table[NestWhile[#+1&, 1, Not[Apply[Or, PrimeQ[(Prime[n]+#)/(2^Range[0,Floor[Log[Prime[n]]/Log[2]]])]]]&], {n, 100}] (* Peter J. C. Moses, Jul 09 2012 *) Table[p = Prime[n]; k = 1; While[q = (p + k)/2^IntegerExponent[p + k, 2]; ! (q == 1 || PrimeQ[q]), k++]; k, {n, 100}] (* T. D. Noe, Jul 10 2012 *)
Comments