cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A214018 Least k >= 1, such that prime(n) + k has the form 2^m * q, m >= 0, where q >= 2 is prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 3, 3, 4, 2, 1, 2, 3, 3, 1, 3, 2, 3, 2, 1, 1, 1, 5, 3, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 3, 2, 3, 3, 5, 5, 2, 1, 1, 2, 1, 3, 4, 2, 1, 3, 1, 7, 2, 3, 3, 3, 1, 3, 3, 1, 5, 1, 3, 3, 2, 1, 2, 3, 4, 3, 3
Offset: 1

Views

Author

Vladimir Shevelev, Jul 01 2012

Keywords

Comments

By the definition, a(n)<=p_(n+1)-p_n. It is well known that, for large n, p_(n+1)-p_n on average is approximately log(n). What is the average behavior of a(n)? By the Broughan-Qizhi inequality, A192869(n)>>n*(log(n))^2. Besides, they conjecture that A192869(n)=O(n*(log(n))^2). But in the case of this sequence, we have, on average, log(n)/2 possible odd values of k< p_(n+1)-p_n.
Therefore, we conjecture that, on average, a(n) is approximately c*log(n) with c in (0,1). Calculations up to 10^6 (Peter J. C. Moses) show that, most likely, c < 0.53 (cf. comment in A213892).

Examples

			a(1)=1, since 2+1=3=2^0*3; a(2)=1, since 3+1=2^1*2.
		

Crossrefs

Programs

  • Mathematica
    Table[NestWhile[#+1&, 1, Not[Apply[Or, PrimeQ[(Prime[n]+#)/(2^Range[0,Floor[Log[Prime[n]]/Log[2]]])]]]&], {n, 100}] (* Peter J. C. Moses, Jul 09 2012 *)
    Table[p = Prime[n]; k = 1; While[q = (p + k)/2^IntegerExponent[p + k, 2]; ! (q == 1 || PrimeQ[q]), k++]; k, {n, 100}] (* T. D. Noe, Jul 10 2012 *)
Showing 1-1 of 1 results.