cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214027 The number of zeros in the fundamental Pisano period of the sequence A000129 mod n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 1, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 4, 2, 2, 1, 4, 2, 1, 1, 2, 2, 2, 2, 4, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 2, 4, 1, 2, 1, 4, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Art DuPre, Jul 04 2012

Keywords

Comments

This is intimately connected with A175181 and A214028, much as A001176 is intimately connected with A001175 and A001177. In fact, A175181(n)/a(n) = A214028(n). This is the same divisibility relation that holds between A001175, A001176 and A001177.

Crossrefs

Similar sequences: A001176, A322906.

Programs

  • Mathematica
    Join[{1}, Table[s = t = Mod[{0, 1}, n]; zeros = 0; While[tmp = Mod[2*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s != t, If[tmp == 0, zeros++]]; zeros, {n, 2, 100}]] (* T. D. Noe, Jul 09 2012 *)
  • PARI
    A000129(m) = ([2, 1; 1, 0]^m)[2, 1]
    a(n) = my(i=1); while(A000129(i)%n!=0, i++); znorder(Mod(A000129(i+1), n)) \\ Jianing Song, Aug 10 2019

Formula

From Jianing Song, Sep 12 2018: (Start)
For odd primes p, a(p^e) = 4 if A214028(p) is odd; 1 if A214028(p) is even but not divisible by 4; 2 if A214028(p) is divisible by 4.
a(n) = 2 for n == 3 (mod 8). For primes p, a(p^e) = 1 if p == 7 (mod 8), 4 if p == 5 (mod 8). Conjecture: 1/6 of the primes congruent to 1 mod 8 satisfy a(p^e) = 1, 2/3 of them satisfy a(p^e) = 2 and 1/6 of them satisfy a(p^e) = 4.
(End)