A214036 Numbers k such that floor(sqrt(1)) + floor(sqrt(2)) + floor(sqrt(3)) + ... + floor(sqrt(k)) is prime.
2, 3, 4, 5, 7, 8, 10, 14, 36, 37, 39, 42, 43, 44, 46, 47
Offset: 1
Examples
2 is a term because floor(sqrt(1))+floor(sqrt(2)) = 1+1 = 2 is prime; 14 is a term because floor(sqrt(1))+ ... +floor(sqrt(14)) = 1+1+1+2+2+2+2+2+3+3+3+3+3+3 = 31 is prime.
Programs
-
Maple
A214036:=proc(q) local a,n; a:=0; for n from 1 to q do a:=a+floor(sqrt(n)); if isprime(a) then print(n); fi; od; end: A214036(10^10); Alternative program: A214036_bis:=proc(q) local a,j,n; a:=0; for n from 1 to q do for j from 1 to 2*n+1 do a:=a+n; if isprime(a) then print(n^2+j-1); fi; od; od; end: A214036_bis(10^10);
-
Mathematica
Position[Accumulate[Table[Floor[Sqrt[n]],{n,50}]],?PrimeQ]//Flatten (* _Harvey P. Dale, Apr 14 2017 *)
-
PARI
sm = 0; for (n=1, 10^9, sm+=sqrtint(n); if (isprime(sm), print1(n,", "))); /* Joerg Arndt, Mar 07 2013 */
Comments