cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214066 a(n) = floor( (3/2)*floor(5*n/2) ).

Original entry on oeis.org

0, 3, 7, 10, 15, 18, 22, 25, 30, 33, 37, 40, 45, 48, 52, 55, 60, 63, 67, 70, 75, 78, 82, 85, 90, 93, 97, 100, 105, 108, 112, 115, 120, 123, 127, 130, 135, 138, 142, 145, 150, 153, 157, 160, 165, 168, 172, 175, 180, 183, 187, 190
Offset: 0

Views

Author

Clark Kimberling, Jul 18 2012

Keywords

Comments

Also, numbers that are congruent to {0,3,7,10} mod 15. - Bruno Berselli, Jul 19 2012

Crossrefs

Cf. A214068.

Programs

  • Magma
    [n: n in [0..190] | n mod 15 in [0,3,7,10]];
    
  • Maple
    A214066:=n->floor((3/2)*floor(5*n/2)): seq(A214066(n), n=0..100); # Wesley Ivan Hurt, Jun 04 2016
  • Mathematica
    f[n_]:=Floor[(3/2)Floor[5n/2]]; t=Table[f[n], {n,0,70}]
  • Maxima
    makelist((30*n+2*%i^((n-1)*n)+3*(-1)^n-5)/8, n, 0, 51);
    
  • PARI
    concat(0, Vec((3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2))+O(x^51))) (End)

Formula

From Bruno Berselli, Jul 19 2012: (Start)
G.f.: x*(3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (30*n+2*i^((n-1)*n)+3*(-1)^n-5)/8, where i=sqrt(-1). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 04 2016