A214066 a(n) = floor( (3/2)*floor(5*n/2) ).
0, 3, 7, 10, 15, 18, 22, 25, 30, 33, 37, 40, 45, 48, 52, 55, 60, 63, 67, 70, 75, 78, 82, 85, 90, 93, 97, 100, 105, 108, 112, 115, 120, 123, 127, 130, 135, 138, 142, 145, 150, 153, 157, 160, 165, 168, 172, 175, 180, 183, 187, 190
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Cf. A214068.
Programs
-
Magma
[n: n in [0..190] | n mod 15 in [0,3,7,10]];
-
Maple
A214066:=n->floor((3/2)*floor(5*n/2)): seq(A214066(n), n=0..100); # Wesley Ivan Hurt, Jun 04 2016
-
Mathematica
f[n_]:=Floor[(3/2)Floor[5n/2]]; t=Table[f[n], {n,0,70}]
-
Maxima
makelist((30*n+2*%i^((n-1)*n)+3*(-1)^n-5)/8, n, 0, 51);
-
PARI
concat(0, Vec((3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2))+O(x^51))) (End)
Formula
From Bruno Berselli, Jul 19 2012: (Start)
G.f.: x*(3+4*x+3*x^2+5*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (30*n+2*i^((n-1)*n)+3*(-1)^n-5)/8, where i=sqrt(-1). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 04 2016
Comments