cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214086 Number of involutions of length n having exactly n inversions.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 10, 17, 39, 119, 254, 613, 1623, 3791, 9281, 23469, 56823, 140035, 349167, 857868, 2122297, 5274213, 13044870, 32357838, 80421284, 199613489, 496144310, 1234420850, 3070773600, 7644879181, 19044266176, 47450853932, 118290412077, 295019269801
Offset: 0

Views

Author

Geoffrey Critzer and Alois P. Heinz, Mar 06 2013

Keywords

Examples

			a(0) = 1: (), the empty involution.
a(3) = 1: (3,2,1); inversions are (3,2), (3,1), (2,1).
a(4) = 1: (3,4,1,2); inversions are (3,1), (3,2), (4,1), (4,2).
a(5) = 2: (1,5,3,4,2), (4,2,3,1,5).
a(6) = 10: (1,2,6,5,4,3), (1,4,6,2,5,3), (1,5,3,6,2,4), (1,5,4,3,2,6), (2,1,6,4,5,3), (3,2,1,6,5,4), (3,5,1,4,2,6), (4,2,3,1,6,5), (4,2,5,1,3,6), (4,3,2,1,5,6).
		

Crossrefs

Diagonal of A213910.
Cf. A128566.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n<0 or k<0, 0, `if`(k=0, 1,
          T(n-1, k) + add(T(n-2, k-2*(n-j)+1), j=1..n-1)))
        end:
    a:= n-> T(n$2):
    seq(a(n), n=0..50);
  • Mathematica
    Needs["Combinatorica`"];
    Table[Count[Map[Inversions,Involutions[n]],n],{n,0,12}]
    (* Second program: *)
    T[n_, k_] := T[n, k] = If[n < 0 || k < 0, 0, If[k == 0, 1, T[n-1, k] + Sum[T[n-2, k-2*(n-j)+1], {j, 1, n-1}]]];
    a[n_] := T[n, n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 04 2023, after Maple code *)

Formula

a(n) = T(n,n) with T(n,k) = T(n-1,k) + Sum_{j=1..n-1} T(n-2,k-2*(n-j)+1) for n>=0, k>0; T(n,k) = 0 for n<0 or k<0; T(n,0) = 1 for n>=0.
a(n) ~ c * d^n / sqrt(n), where d = 2.529010713480526199368... is the root of the equation 4 - 23*d - 36*d^2 - 8*d^3 + 4*d^5 = 0, c = 0.08933570507578447270759... . - Vaclav Kotesovec, Sep 07 2014