cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214094 a(0)=0, a(1)=1; a(n)=a(n-1)+a(n-2) if a(n-1)+a(n-2) is not semiprime; otherwise a(n) is the largest prime divisor of a(n-1)+a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 7, 20, 27, 47, 37, 84, 11, 19, 30, 7, 37, 44, 81, 125, 103, 228, 331, 43, 374, 139, 513, 652, 233, 885, 1118, 2003, 3121, 5124, 8245, 461, 8706, 103, 383, 486, 79, 113, 192, 61, 23, 84, 107, 191, 149, 340, 163, 503, 666, 167, 833, 1000, 1833, 2833, 2333, 5166, 7499
Offset: 0

Views

Author

Vladimir Shevelev, Feb 16 2013

Keywords

Comments

An analog of the Fibonacci numbers A000045 without semiprimes.
Is the sequence unbounded? (Cf. a dual sequence A214156 which is bounded.)

Crossrefs

Programs

  • Maple
    A214094 := proc(n)
        option remember ;
        if n <=1 then
            n;
        else
            a := procname(n-1)+procname(n-2) ;
            if numtheory[bigomega](a) =2 then
                max(op(numtheory[factorset](a)));
            else
                return a;
            end if;
        end if;
    end proc: # R. J. Mathar, Feb 18 2013
  • Mathematica
    A214094[0]:=0;
    A214094[1]:=1;
    A214094[n_]:=A214094[n]=If[PrimeOmega[#]==2,Last[Most[Divisors[#]]],#]&[A214094[n-1]+A214094[n-2]];
    Table[A214094[n],{n,0,99}] (* Peter J. C. Moses, Feb 18 2013 *)
    nxt[{a_,b_}]:={b,If[PrimeOmega[a+b]==2,FactorInteger[a+b][[-1,1]],a+b]}; NestList[nxt,{0,1},70][[All,1]] (* Harvey P. Dale, Nov 13 2017 *)