A214129 Partitions of n into parts congruent to +-1, +-5 (mod 13).
1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 19, 21, 24, 27, 31, 34, 38, 42, 47, 52, 58, 64, 71, 78, 87, 95, 105, 116, 128, 140, 154, 168, 185, 202, 221, 241, 264, 287, 314, 341, 373, 405, 441, 478, 520, 564, 612, 662, 719, 777, 842
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ... G.f. = q^-1 + q^5 + q^11 + q^17 + q^23 + 2*q^29 + 2*q^35 + 2*q^41 + 3*q^47 + 3*q^53 + ...
References
- Evans (1990) page 99 equation (1.10) is the connection between A214129, A214130, A214131. - Michael Somos, Nov 01 2024
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ronald J. Evans, Theta Function Identities, J. of Mathematical Analysis and Applications 147(1990), 97-121.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ q, q^13] QPochhammer[ q^5, q^13] QPochhammer[ q^8, q^13] QPochhammer[ q^12, q^13]), {q, 0, n}]
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [ 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1][k%13 + 1] * x^k, 1 + x * O(x^n)), n))}
Formula
Expansion of f(-x^13)^2 / (f(-x, -x^12) * f(-x^5, -x^8)) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 13 sequence [ 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, ...].
G.f.: 1 / (Product_{k>0} (1 - x^(13*k - 1)) * (1 - x^(13*k - 5)) * (1 - x^(13*k - 8)) * (1 - x^(13*k - 12))).
Comments