cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214131 Partitions of n into parts congruent to +-4, +-6 (mod 13).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 10, 12, 12, 15, 15, 18, 19, 22, 23, 27, 28, 32, 35, 39, 41, 47, 50, 56, 60, 67, 71, 80, 85, 94, 101, 113, 119, 132, 141, 156, 166, 183, 195, 215, 229, 250, 268, 293, 313, 341
Offset: 0

Views

Author

Michael Somos, Jul 04 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x^4 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + 2*x^12 + 2*x^13 + 2*x^14 + ...
q^5 + q^29 + q^41 + q^47 + q^53 + q^59 + q^65 + q^71 + 2*q^77 + 2*q^83 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ q^4, q^13] QPochhammer[ q^6, q^13] QPochhammer[ q^7, q^13] QPochhammer[ q^9, q^13]), {q, 0, n}]
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [ 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0][k%13 + 1] * x^k, 1 + x * O(x^n)), n))}

Formula

Expansion of f(-x^13)^2 / (f(-x^4, -x^9) * f(-x^6, -x^7)) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 13 sequence [ 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, ...].
G.f.: 1 / (Product_{k>0} (1 - x^(13*k - 4)) * (1 - x^(13*k - 6)) * (1 - x^(13*k - 7)) * (1 - x^(13*k - 9))).
A214129(n) = A214130(n) + a(n-1).

A214130 Partitions of n into parts congruent to +-2, +-3 (mod 13).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 7, 9, 9, 11, 12, 14, 15, 18, 19, 23, 24, 28, 30, 35, 37, 43, 46, 52, 56, 64, 68, 77, 84, 93, 101, 113, 121, 135, 146, 161, 174, 193, 207, 229, 247, 272, 292, 322, 346, 379, 408, 446, 479, 524, 562, 613, 659
Offset: 0

Views

Author

Michael Somos, Jul 04 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + ...
q^-1 + q^11 + q^17 + q^23 + q^29 + 2*q^35 + q^41 + 2*q^47 + 2*q^53 + ...
		

Crossrefs

Programs

  • Maple
    with (numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(irem(d, 13) in [2, 3, 10, 11], d, 0),
              d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 23 2013
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ q^2, q^13] QPochhammer[ q^3, q^13] QPochhammer[ q^10, q^13] QPochhammer[ q^11, q^13]), {q, 0, n}]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[MemberQ[{2, 3, 10, 11}, Mod[d, 13]], d, 0], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [ 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0][k%13 + 1] * x^k, 1 + x * O(x^n)), n))}

Formula

Expansion of f(-x^13)^2 / (f(-x^2, -x^11) * f(-x^3, -x^10)) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 13 sequence [ 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, ...].
G.f.: 1 / (Product_{k>0} (1 - x^(13*k - 2)) * (1 - x^(13*k - 3)) * (1 - x^(13*k - 10)) * (1 - x^(13*k - 11))).
A214129(n) = a(n) + A214131(n-1).
Showing 1-2 of 2 results.