A214130 Partitions of n into parts congruent to +-2, +-3 (mod 13).
1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 7, 9, 9, 11, 12, 14, 15, 18, 19, 23, 24, 28, 30, 35, 37, 43, 46, 52, 56, 64, 68, 77, 84, 93, 101, 113, 121, 135, 146, 161, 174, 193, 207, 229, 247, 272, 292, 322, 346, 379, 408, 446, 479, 524, 562, 613, 659
Offset: 0
Keywords
Examples
1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + ... q^-1 + q^11 + q^17 + q^23 + q^29 + 2*q^35 + q^41 + 2*q^47 + 2*q^53 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Maple
with (numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add( `if`(irem(d, 13) in [2, 3, 10, 11], d, 0), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 23 2013
-
Mathematica
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ q^2, q^13] QPochhammer[ q^3, q^13] QPochhammer[ q^10, q^13] QPochhammer[ q^11, q^13]), {q, 0, n}] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[MemberQ[{2, 3, 10, 11}, Mod[d, 13]], d, 0], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [ 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0][k%13 + 1] * x^k, 1 + x * O(x^n)), n))}
Formula
Expansion of f(-x^13)^2 / (f(-x^2, -x^11) * f(-x^3, -x^10)) in powers of x where f() is Ramanujan's two-variable theta function.
Euler transform of period 13 sequence [ 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, ...].
G.f.: 1 / (Product_{k>0} (1 - x^(13*k - 2)) * (1 - x^(13*k - 3)) * (1 - x^(13*k - 10)) * (1 - x^(13*k - 11))).
Comments