A214151 Numbers k from the set == 5 (mod 6) with the property that 3^((3*k-1)/2) == 3 (mod k) and 2^((k-1)/2) == (k-1) (mod k).
11, 59, 83, 107, 131, 179, 227, 251, 347, 419, 443, 467, 491, 563, 587, 659, 683, 827, 947, 971, 1019, 1091, 1163, 1187, 1259, 1283, 1307, 1427, 1451, 1499, 1523, 1571, 1619, 1667, 1787, 1811, 1907, 1931, 1979, 2003, 2027, 2099, 2243, 2267
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
isA214151 := proc(n) if (n mod 6 = 5) and modp(2 &^ ((n-1)/2),n) = n-1 and modp(3 &^ ((3*n-1)/2),n) = 3 then true; else false; end if; end proc: for n from 5 by 6 do if isA214151(n) then print(n) ; end if; end do: # R. J. Mathar, Jul 20 2012
-
Mathematica
Select[Range[5,2500,6],PowerMod[3,(3#-1)/2,#]==3&&PowerMod[2,(#-1)/2,#] == #-1&] (* Harvey P. Dale, Mar 14 2022 *)
-
PARI
for(n=0, 200, b=6*n+5; if(Mod(3, b)^((3*b-1)/2)==3, if(Mod(2, b)^((b-1)/2)==b-1 , print1(b, ", "))));
Comments