cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214151 Numbers k from the set == 5 (mod 6) with the property that 3^((3*k-1)/2) == 3 (mod k) and 2^((k-1)/2) == (k-1) (mod k).

Original entry on oeis.org

11, 59, 83, 107, 131, 179, 227, 251, 347, 419, 443, 467, 491, 563, 587, 659, 683, 827, 947, 971, 1019, 1091, 1163, 1187, 1259, 1283, 1307, 1427, 1451, 1499, 1523, 1571, 1619, 1667, 1787, 1811, 1907, 1931, 1979, 2003, 2027, 2099, 2243, 2267
Offset: 1

Views

Author

Alzhekeyev Ascar M, Jul 05 2012

Keywords

Comments

All composites in this sequence are 2-pseudoprimes, see A001567, and strong pseudoprimes to base 2, A001262.
The subsequence of these composites begins: 1441091, 3587553971, 4528686251, 23260036451, 47535120323, 61070250323, 90474845819, 143193768587, 162016315907, 173868807611, 180998962187, 238364070323, 285370693931, 298577370323, ...
Perhaps this sequence contains all the terms of the sequence A107007 or A168539.

Crossrefs

Subsequence of A176997.

Programs

  • Maple
    isA214151 := proc(n)
        if (n mod 6 = 5) and modp(2 &^ ((n-1)/2),n)  = n-1 and modp(3 &^ ((3*n-1)/2),n)  = 3 then
            true;
        else
            false;
        end if;
    end proc:
    for n from 5 by 6 do
        if isA214151(n) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Jul 20 2012
  • Mathematica
    Select[Range[5,2500,6],PowerMod[3,(3#-1)/2,#]==3&&PowerMod[2,(#-1)/2,#] == #-1&] (* Harvey P. Dale, Mar 14 2022 *)
  • PARI
    for(n=0, 200, b=6*n+5; if(Mod(3, b)^((3*b-1)/2)==3, if(Mod(2, b)^((b-1)/2)==b-1 , print1(b, ", "))));